
INFORMATION-

THEORETIC

INCOMPLETENESS

G. J. Chaitin

IBM, P O Box 704

Yorktown Heights, NY 10598

chaitin@watson.ibm.com

Published 1992 by

World Scienti�c, Singapore

Acknowledgments|The author and the publisher are grateful to the follow-
ing for permission to reprint the papers included in this volume:

� La Recherche;

� IPC Magazines Ltd. (New Scientist);

� Elsevier Science Publishing Co., Inc.
(Applied Mathematics and Computation);

� Kluwer Academic Publishers B.V. and Marc E. Carvallo
(Nature, Cognition, and System, Vol. 3);

� Springer-Verlag New York Inc. (The Mathematical Intelligencer).

Thanks are due to Abraham Peled, Michael Blasgen and Martin Hopkins (Com-

puter Science Department, Watson Research Center) for supporting this research.

Also to Axel Leijonhufvud and Vela Velupillai, whose invitation to the author to

give a series of lectures at the UCLA Center for Computable Economics was an

important stimulus.

To my parents Sara and Norman,

and to Maureen and Carmen for being so sweet!

Foreword

My book Algorithmic Information Theory is like hiking up a mountain

by the fastest route, not stopping until one reaches the top. Here we

shall instead take a look at interesting sights along the way and explore

some alternate routes, in roughly the order that I discovered them.

In this book I shall survey eight di�erent theories of program size

complexity based on eight di�erent programming models. And I'll dis-

cuss the incompleteness results that one gets in each of these eight

theories.

I decided to tell this story in the form of a mathematical autobi-

ography.

Gregory Chaitin

v

vi

Contents

A life in math 1

I Technical Survey 13

Turing machines 17

Blank-endmarker programs 25

LISP program-size complexity 37

LISP program-size complexity II 55

LISP program-size complexity III 83

LISP program-size complexity IV 97

Information-theoretic incompleteness 107

II Non-Technical Discussions 129

Arena program on `numbers' 133

A random walk in arithmetic 137

Number and randomness 145

Randomness in arithmetic 161

vii

viii

Le hasard des nombres 171

Complexity and randomness in mathematics 189

Book review 205

The Challenge for the Future 215

Complexity and biology 217

Afterword 219

Bibliography 223

Sources of quotations 223

Classics 225

A LIFE IN MATH

\Guts and imagination!"

|The ambitious young director Easton in
Norman Chaitin's 1962 �lm The Small Hours

\The open secret of real success is to throw your whole personality at
a problem."

|G. Polya, How to Solve It

\To appreciate the living spirit rather than the dry bones of mathe-
matics, it is necessary to inspect the work of a master at �rst hand.
Textbooks and treatises are an unavoidable evil: : : The very crudities
of the �rst attack on a signi�cant problem by a master are more illu-
minating than all the pretty elegance of the standard texts which has
been won at the cost of perhaps centuries of �nicky polishing."

|Eric Temple Bell,

Mathematics: Queen & Servant of Science

Beginnings

In which we consider the plight of a bright child growing up in Manhat-

tan and attempting to learn everything, including general relativity and

G�odel's incompleteness theorem, on his own.

It was fun being a child in Manhattan in the late 1950s and early

1960s. I was lucky to go to a series of good public schools, and

to take advantage of many special programs for bright children, and

many accelerated school programs. The Bronx High School of Sci-

ence was an exciting place, with an excellent school library, and lots of

1

2 Prologue

very bright students. There were new almost-college-level experimental

math, physics, biology and chemistry courses that had been provoked

by the Russian success in orbiting the arti�cial satellite Sputnik before

America could put a satellite in orbit. While at the Bronx High School

of Science I got into a special program for bright high school students

run by Columbia University, called the Science Honors Program, where

I was able to play with computers. This was great fun, and not at all

usual at that time, because computers were still a novelty.

We lived a block away from Central Park, near many branches of

the New York City Public Library full of interesting books, and also

at walking distance from the Museum of Modern Art (conveniently

located across the street from a branch of the Public Library). I spent

much of my time in the park, at the library, and in the Museum of

Modern Art, where I saw many interesting old and foreign �lms. (I've

never lost my taste for such �lms; the early Ingmar Bergman �lms

and Eric Rohmer's �lms are among my favorites as an adult.)

I would hike across Central Park, looking for interesting rocks, par-

ticularly crystals and fossils, which I would then compare with the

collection of minerals in the Museum of Natural History across the

park from our apartment. (As an adult I've continued hiking. First in

Argentina, then in New York's Hudson Valley and Maine's Mt. Desert

Island, and lately in Switzerland.)

My parents were involved with the United Nations and with the

theater and �lm making. Recently I was
ying back to New York on a

Swissair
ight after lecturing in G�odel's classroom in Vienna, and a

documentary aboutMarilyn Monroe was shown on the plane. All of

a sudden, there on the screen for a moment were my father and several

others with Marilyn Monroe!

All this gave me the feeling that anything was possible, that the

sky was the limit. As the ambitious young director Easton says in my

father's 1962 �lm The Small Hours, all it takes is \Guts and imagina-

tion!"

Two big steps in my childhood were when I was given permission to

take out books from the adult section of the New York Public Library,

even though I was much too young. Also when in high school as a

member of the Columbia University Science Honors Program I was

given the run of the stacks of the Columbia University mathematics

A Life in Math 3

library, and could have �rst-hand contact with the collected works of

masters like Neils Henrik Abel and L�eonard Euler. The library

at the Bronx High School of Science was also good, and later I had

permission to enter the stacks of the City College library. I read a lot;

I was a sponge!

Scienti�c American with Martin Gardner's Mathematical

Games and the Amateur Astronomer and Amateur Scientist depart-

ments played a big role in my childhood. I read every issue, and tried

out many of the mathematical games and amateur scientist experi-

ments. One of my amateur scientist projects was building a van de

Graaff electrostatic generator, which I did when I was eleven years

old.

My �rst loves were physics and astronomy. I wanted very badly to

learn Einstein's theories and build a telescope on my own. (I did-

n't quite manage it then, but as an adult I did.) One problem was

that to read the physics books one had to understand mathematics.

And it was hard to get equipment for physics experiments and astron-

omy. So I started studying math and experimenting with computers. I

spent a lot of time in high school programming Edward F. Moore's

\Gedanken-Experiments on Sequential Machines,"1 which led to my

�rst publication, written while I was in high school.2

In high school I was also interested in game theory, information

theory and in G�odel's incompleteness theorem. These subjects were

still relatively new and exciting then, and there were not many books

about them or about computers either, which were also a novelty at

that time. I �rst had the idea of de�ning randomness via algorithmic

incompressibility as part of the answer for an essay question on the

entrance exam to get into the Science Honors Program! But I forgot

the idea for a few years.

The summer between the Bronx High School of Science and the

City College of the City University of New York, I thought about the

simplicity and speed of programs for computing in�nite sets of natural

1Edward F. Moore, \Gedanken-Experiments on Sequential Machines," in
Claude E. Shannon and John McCarthy, Automata Studies, Annals of Math-

ematics Studies, No. 34, Princeton: Princeton University Press (1956), pp. 129{153.
2Gregory J. Chaitin, \An Improvement on a Theorem of E. F. Moore," IEEE

Transactions on Electronic Computers EC-14 (1965), pp. 466{467.

4 Prologue

numbers.3 In this connection I came up with my �rst incomplete-

ness theorem.4 G�odel's original proof I had found to be in�nitely

fascinating, but incomprehensible. Once I formulated and proved an

incompleteness theorem of my own, I began to understand G�odel's.

(To really understand something, I believe that one must discover it

oneself, not learn it from anyone else!)

During my �rst year at City College, while reading von Neu-

mann and Morgenstern's Theory of Games and Economic Behavior

where they invoke random (\mixed") strategies for zero-sum two-person

games without a saddle point (\Justi�cation of the Procedure as Ap-

plied to an Individual Play"),5 I recalled my idea for a de�nition of

randomness, and decided to try to develop it mathematically using the

notion of a Turing machine. I did this the next summer, the summer

of 1965, between my �rst and second years at City College, while seeing

interesting �lms at the Museum of Modern Art and thinking in Central

Park. When college started in the fall, I was excused from attending

classes to �nish writing up my results!6;7;8;9 These papers contain two

theories of program size based on counting the number of states inTur-

ing machines, and one theory of program size based on counting bits in

3This eventually became: Gregory J. Chaitin, \On the Simplicity and Speed
of Programs for Computing In�nite Sets of Natural Numbers," Journal of the ACM
16 (1969), pp. 407{422.

4Maximizing over all provably total recursive functions, one obtains a total re-
cursive function that grows more quickly than any function that is provably total.
See the discussion at the end of Section 2 of: Gregory J. Chaitin, \G�odel's The-
orem and Information," International Journal of Theoretical Physics 22 (1982), pp.
941{954.

5John von Neumann and Oskar Morgenstern, Theory of Games and Eco-

nomic Behavior, Princeton: Princeton University Press (1953), pp. 146{148.
6Gregory J. Chaitin, \On the Length of Programs for Computing Finite

Binary Sequences by Bounded-Transfer Turing Machines," Abstract 66T{26, AMS

Notices 13 (1966), p. 133.
7Gregory J. Chaitin, \On the Length of Programs for Computing Finite

Binary Sequences by Bounded-Transfer Turing Machines II," Abstract 631{6, AMS

Notices 13 (1966), pp. 228{229.
8Gregory J. Chaitin, \On the Length of Programs for Computing Finite

Binary Sequences," Journal of the ACM 13 (1966), pp. 547{569.
9Gregory J. Chaitin, \On the Length of Programs for Computing Finite

Binary Sequences: Statistical Considerations," Journal of the ACM 16 (1969), pp.
145{159. Publication was inexplicably delayed.

A Life in Math 5

programs for more abstract binary computers; altogether three di�er-

ent theories of program size! (I did all this when I was eighteen.) Then

my parents and I moved to Buenos Aires, a sophisticated European

city of cafes, cinemas, restaurants, beer halls, and rowing clubs. There

my adult life began and I almost immediately joined IBM working as

a programmer, continuing my research as a hobby.

Adult Activities

In August 1968 I presented a paper summarizing my ideas at the Pan-

American Symposium of Applied Mathematics in Buenos Aires. This

was published in 1970.10 In 1970 I also published some thoughts on

possible connections between my work and John von Neumann's

ideas on self-reproducing automata11 in the newsletter of the ACM's

Special Interest Committee on Automata and Computability Theory

(SICACT).12 (SICACT was later renamed SIGACT, the Special Inter-

est Group on Automata and Computability Theory).

I discovered my �rst information-theoretic incompleteness theorem

in 1970 at the age of twenty-two while I was visiting a Rio de Janiero

university and enjoying the tropical beaches and the excitement of

Carnival.13;14 (I should have discovered this incompleteness theorem in

1965, because this theorem is an immediate consequence of the proof

that program-size complexity is uncomputable that I give in my 1966

Journal of the ACM paper. The reason that I didn't discover this theo-

rem in 1965 is that I was so interested in randomness that I temporarily

forgot about incompleteness! The moment that I thought about ran-

domness and incompleteness, I realized that one cannot prove that

10Gregory J. Chaitin, \On the Di�culty of Computations," IEEE Transac-

tions on Information Theory IT{16 (1970), pp. 5{9.
11John von Neumann, Theory of Self-Reproducing Automata, Urbana: Univer-

sity of Illinois Press (1966). Edited and completed by Arthur W. Burks.
12Gregory J. Chaitin, \To aMathematical De�nition of `Life',"ACM SICACT

News 4 (January 1970), pp. 12{18.
13Gregory J. Chaitin, \Computational Complexity and G�odel's Incomplete-

ness Theorem," Abstract 70T{E35, AMS Notices 17 (1970), p. 672.
14Gregory J. Chaitin, \Computational Complexity and G�odel's Incomplete-

ness Theorem," ACM SIGACT News 9 (April 1971), pp. 11{12.

6 Prologue

a string is random because of very strong information-theoretic con-

straints on the power of mathematical reasoning.)

And in Rio I obtained a copy of the original MIT LISP 1.5 manual.15

When I returned to Buenos Aires I learned LISP by writing a LISP

interpreter. This was the �rst of many LISP interpreters that I was to

write, and the beginning of a long love a�air with LISP. (I was having

so much fun playing with LISP on computers that I did not realize that

my theoretical ideas on program-size complexity apply beautifully to

LISP.16)

The early 1970s were a time of intense activity.17;18;19;20;21;22 I gave

a course on LISP and two courses on \Computability and Metamathe-

matics" at Ciencias Exactas, the School of Exact Sciences of the Uni-

versity of Buenos Aires.

In the early 1970s I continued developing my information-theoretic

approach to incompleteness. In October 1971, Jacob T. Schwartz

presented a paper on this for me at the Courant Institute Computa-

tional Complexity Symposium in New York. In June 1973, Terrence

L. Fine presented a paper on this for me at the IEEE International

Symposium on Information Theory in Ashkelon, Israel.23 In 1974 these

15John McCarthy, Paul W. Abrahams, Daniel J. Edwards, Timothy

P. Hart, and Michael I. Levin, LISP 1.5 Programmer's Manual, Cambridge:
MIT Press (1985).

16See pages 37{105 in this volume.
17Gregory J. Chaitin, Information-Theoretic Aspects of the Turing Degrees,

Abstract 72T{E77, AMS Notices 19 (1972), pp. A{601, A{602.
18Gregory J. Chaitin, \Information-Theoretic Aspects of Post's Construction

of a Simple Set," Abstract 72T{E85, AMS Notices 19 (1972), p. A{712.
19Gregory J. Chaitin, \On the Di�culty of Generating all Binary Strings of

Complexity less than N;" Abstract 72T{E101, AMS Notices 19 (1972), p. A{764.
20Gregory J. Chaitin, \On the Greatest Natural Number of De�nitional or

Information Complexity � N;" Recursive Function Theory: Newsletter 4 (January
1973), pp. 11{13.

21Gregory J. Chaitin, \A Necessary and Su�cient Condition for an In�nite
Binary String to be Recursive," Recursive Function Theory: Newsletter 4 (January
1973), p. 13.

22Gregory J. Chaitin, \There are Few MinimalDescriptions," Recursive Func-
tion Theory: Newsletter 4 (January 1973), p. 14.

23Gregory J. Chaitin, \Information-Theoretic Computational Complexity,"
Abstracts of Papers, 1973 IEEE International Symposium on Information Theory,

A Life in Math 7

two papers were published as an invited paper in the IEEE Transac-

tions on Information Theory24 and a much longer paper in the Journal

of the ACM.25

While visiting the IBM Thomas J. Watson Research Center in

New York in 1974, I realized that it is very important to use abstract

binary computers to measure program-size complexity that have self-

delimiting programs.26 (Indeed, the Turing machines that I had stud-

ied had self-delimiting programs. Dropping this when going to abstract

binary computers had been a mistake.) The de�nition of relative com-

plexity also needed a correction. This new approach made a world of

di�erence: It was during this visit that I devised the halting probability

 and showed that
 is random. At this point it became appropriate to

refer to this subject as \algorithmic information theory;" the de�nitions

were now right. I was invited to speak about this at the opening ple-

nary session of the 1974 IEEE International Symposium on Information

Theory.27

In 1975 my �rst Scienti�c American article appeared.28 I visited

the IBM Thomas J. Watson Research Center again, wrote a few

June 25{29, 1973, King Saul Hotel, Ashkelon, Israel, IEEE Catalog No. 73 CHO
753{4 IT, p. F1{1.

24Gregory J. Chaitin, \Information-Theoretic Computational Complexity,"
IEEE Transactions on Information Theory IT{20 (1974), pp. 10{15. Reprinted in:
Thomas Tymoczko, New Directions in the Philosophy of Mathematics, Boston:
Birkh�auser (1986), pp. 287{299.

25Gregory J. Chaitin, \Information-Theoretic Limitations of Formal Sys-
tems," Journal of the ACM 21 (1974), pp. 403{424.

26Gregory J. Chaitin, \A Theory of Program Size Formally Identical to In-
formation Theory," Journal of the ACM 22 (1975), pp. 329{340.

27Gregory J. Chaitin, \A Theory of Program Size Formally Identical to In-
formation Theory," Abstracts of Papers, 1974 IEEE International Symposium on

Information Theory, October 28{31, 1974, University of Notre Dame, Notre Dame,
Indiana, USA, IEEE Catalog No. 74 CHO 883{9 IT, p. 2.

28Gregory J. Chaitin, \Randomness and Mathematical Proof," Scienti�c

American 232 (May 1975), pp. 47{52. Also published in the French, Italian and
Japanese editions of Scienti�c American.

8 Prologue

papers,29;30;31 and then became a permanent member of the sta� at

the Watson Research Center. For a decade I was heavily involved

in pioneering work on RISC technology. In spite of this, I managed

to publish a few survey papers,32;33;34 an improved version of my 1970

SICACT paper on biology,35 and a note with Jacob T. Schwartz.36

In the mid 1980s, after working on a computer physics course,37 I

received an invitation to write the �rst book in the new Cambridge

University Press series Cambridge Tracts in Theoretical Computer Sci-

ence. This invitation was a tremendous stimulus. It encouraged me

to re-think incompleteness using self-delimiting complexity (my 1974

de�nitions). While working on the book I discovered that there is

randomness in arithmetic.38;39 I proved this by transforming
 into

29Gregory J. Chaitin, \Information-Theoretic Characterizations of Recursive
In�nite Strings," Theoretical Computer Science 2 (1976), pp. 45{48.

30Gregory J. Chaitin, \Algorithmic Entropy of Sets," Computers & Mathe-

matics with Applications 2 (1976), pp. 233{245.
31Gregory J. Chaitin, \Program Size, Oracles, and the Jump Operation,"

Osaka Journal of Mathematics 14 (1977), pp. 139{149.
32Gregory J. Chaitin, \Algorithmic Information Theory," IBM Journal of

Research and Development 21 (1977), pp. 350{359, 496.
33Gregory J. Chaitin, \Algorithmic Information Theory," in Samuel Kotz,

Norman L. Johnson and Campbell B. Read, Encyclopedia of Statistical Sci-

ences, Vol. 1, New York: Wiley (1982), pp. 38{41.
34Gregory J. Chaitin, \G�odel's Theorem and Information," International

Journal of Theoretical Physics 22 (1982), pp. 941{954. Reprinted in: Thomas Ty-
moczko, New Directions in the Philosophy of Mathematics, Boston: Birkh�auser

(1986), pp. 300{311.
35Gregory J. Chaitin, \Toward a Mathematical De�nition of `Life'," in

Raphael D. Levine and Myron Tribus, The Maximum Entropy Formalism,

Cambridge: MIT Press (1979), pp. 477{498.
36Gregory J. Chaitin and Jacob T. Schwartz, \A Note on Monte Carlo

Primality Tests and Algorithmic Information Theory," Communications on Pure

and Applied Mathematics 31 (1978), pp. 521{527.
37Gregory J. Chaitin, \An APL2 Gallery of Mathematical Physics|A Course

Outline," in IBM Japan, Proceedings Japan 85 APL Symposium, form N:GE18{
9948{0 (1985), pp. 1{56.

38Gregory J. Chaitin, \Random Reals and Exponential Diophantine Equa-
tions," Research Report RC{11788, Yorktown Heights: IBM Thomas J. Watson

Research Center (March 1986), 6 pp.
39Gregory J. Chaitin, \Incompleteness Theorems for Random Reals," Ad-

vances in Applied Mathematics 8 (1987), pp. 119{146.

A Life in Math 9

a two-hundred page algebraic equation involving only whole numbers.

The book40 is full of new results, and has a foreword by Jacob T.

Schwartz. A collection of my papers41 was published at the same

time.42

My discovery of randomness in arithmetic attracted a great deal of

attention, starting with an article by Ian Stewart in Nature.43 I had

the pleasure of writing about it not only in Scienti�c American,44 but

also in the English magazine New Scientist45 and the French magazine

La Recherche.46 I also had the pleasure of being invited to speak on this

work in the very room of the Mathematical Institute of the University

of Vienna where G�odel used to teach.47 The room where I lectured

is called the G�odel classroom and has a stone plaque on the wall

announcing that \hier wirkte KURT G�ODEL von 1932{1938".

I also gave a less technical talk on the background and the broader

40Gregory J. Chaitin, Algorithmic Information Theory, Cambridge Tracts
in Theoretical Computer Science, No. 1, Cambridge: Cambridge University Press
(1987). Reprinted with corrections in 1988 and 1990.

41Gregory J. Chaitin, Information, Randomness & Incompleteness|Papers

on Algorithmic Information Theory, Singapore: World Scienti�c (1987). A second
edition was published in 1990.

42Incidentally, my father published a book when he was twenty. I was forty when
these two books appeared.

43Ian Stewart, \The Ultimate in Undecidability," Nature 232 (10 March 1988),
pp. 115{116.

44Gregory J. Chaitin, \Randomness in Arithmetic," Scienti�c American 259
(July 1988), pp. 80{85. Also published in the French, German, Italian, Japanese
and Spanish editions of Scienti�c American.

45Gregory J. Chaitin, \A Random Walk in Arithmetic," New Scientist 125
(24 March 1990), pp. 44{46. Reprinted in: Nina Hall, The New Scientist Guide

to Chaos, Harmondsworth: Penguin (1991), pp. 196{202. Also reprinted in this
volume, p. 137.

46Gregory J. Chaitin, \Le Hasard des Nombres," La Recherche 22 (May 1991),
pp. 610{615. Reprinted in this volume, p. 171. Also published in the Spanish edition
of La Recherche.

47Gregory J. Chaitin, \Randomness in Arithmetic," in Marc E. Car-

vallo, Nature, Cognition and System, Vol. 3, Dordrecht: Kluwer (1993), in press.
Reprinted in this volume, p. 161.

10 Prologue

signi�cance of my work.48;49

How is the two-hundred page equation for
 constructed? I start

with an interpreter for a toy version of LISP that I originally used in

the LISP course that I gave at Ciencias Exactas (the School of Exact

Sciences of the University of Buenos Aires) in the early 1970s. I then

take this LISP interpreter and transform it into an equation using ideas

of Jones and Matijasevi�c.50 Finally, I plug a LISP program for

computing approximations to
 into the equation that I produced from

the LISP interpreter. The software for doing all of this was originally in

assembly language. It has been rewritten twice: in C, and in the very

high level language SETL2. (This software is available on request.)

I had the pleasure of speaking at two Solvay conferences in Brus-

sels. One took place in October 1985, the other in September 1989.

Both conferences were organized by Prof Ilya Prigogine and spon-

sored by the Solvay Institute and the Honda Foundation. Both

conferences were quite stimulating. My �rst talk is summarized in a

paper.51 My second talk was �lmed; a transcript is included in the sec-

ond collection of my papers52 (my New Scientist article is a condensed

version of this talk; my La Recherche article is an expanded version).

I am grateful to the King and Queen of Belgium, Mr Honda,

Mr Solvay and Prof Prigogine for their hospitality. Two memo-

rable moments: One, a dinner at Mr Solvay's city residence. Among

the guests, the King and Queen of Belgium, the Crown Prince of

Japan, Mr Honda and Prof Prigogine. The other, a party hosted

48Gregory J. Chaitin, \Zahlen und Zufall," in Hans-Christian Reichel

and Enrique Prat de la Riba, Naturwissenschaft und Weltbild, Vienna: Verlag

H�older{Pichler{Tempsky (1992), pp. 30{44.
49Gregory J. Chaitin, \Number and Randomness," in Marc E. Car-

vallo, Nature, Cognition and System, Vol. 3, Dordrecht: Kluwer (1993), in press.
Reprinted in this volume, p. 145.

50James P. Jones and Yuri V. Matijasevi�c, \Register Machine Proof of the
Theorem on Exponential Diophantine Representation of Enumerable Sets," Journal
of Symbolic Logic 49 (1984), pp. 818{829.

51Gregory J. Chaitin, \Randomness and G�odel's Theorem," Mondes en

D�eveloppement 54{55 (1986), pp. 125{128.
52Gregory J. Chaitin, \Undecidability & Randomness in Pure Mathematics,"

in Gregory J. Chaitin, Information, Randomness & Incompleteness|Papers on

Algorithmic Information Theory, Singapore: World Scienti�c (1990), pp. 307{313.

A Life in Math 11

by Mr Honda, with a string quartet playing Mozart and dressed in

period costumes. During a break, one of the performers standing in his

wig and knee-breeches, eating sushi with chopsticks!

Recently I have given much thought to program size in

LISP,53;54;55;56 which works out nicely.

My latest paper presents surprising reformulations of my most

basic incompleteness theorems using self-delimiting enumeration

complexity.57

This book is the story of my mathematical adventures, and this

story is told roughly in the order that I made the discoveries. The

�rst part surveys eight di�erent theories of program-size complexity:

one based on Turing machines, three based on LISP, and four using

abstract binary computers (see the index of complexity measures on

p. 12). In each case the emphasis is on incompleteness theorems. The

second part discusses the signi�cance of information-theoretic incom-

pleteness.

\The essential in the being of a man of my type lies precisely in what

he thinks and how he thinks, not in what he does or su�ers."

\This exposition has ful�lled its purpose if it shows the reader how the
e�orts of a life hang together and why they have led to expectations
of a de�nite form."

|Albert Einstein, Autobiographical Notes

53Gregory J. Chaitin, \LISP Program-Size Complexity,"Applied Mathematics

and Computation 49 (1992), pp. 79{93. Reprinted in this volume, p. 37.
54Gregory J. Chaitin, \LISP Program-Size Complexity II," Applied Mathe-

matics and Computation 52 (1992), pp. 103{126. Reprinted in this volume, p. 55.
55Gregory J. Chaitin, \LISP Program-Size Complexity III," Applied Mathe-

matics and Computation 52 (1992), pp. 127{139. Reprinted in this volume, p. 83.
56Gregory J. Chaitin, \LISP Program-Size Complexity IV," Applied Mathe-

matics and Computation 52 (1992), pp. 141{147. Reprinted in this volume, p. 97.
57Gregory J. Chaitin, \Information-Theoretic Incompleteness," Applied

Mathematics and Computation 52 (1992), pp. 83{101. Reprinted in this volume,
p. 107.

12 Prologue

Index of Complexity Measures

Notation Name : Page Unit

Turing Machines Complexity Measure

Htm Turing Machine Complexity : : : : : : : : : : : : : : : 17 States

LISP Complexity Measures

Hlisp (Real) LISP Complexity : : : : : : : : : : : : : : : : : : : 37 Characters
Hpf Parenthesis-Free LISP Complexity : : : : : : : : : 83 Characters
Hcs Character-String LISP Complexity : : : : : : : : 97 Characters

Abstract Binary Computer Complexity Measures

Hb Blank-Endmarker Complexity : : : : : : : : : : : : : 25 Bits
Hbe Blank-Endmarker Enumeration Complexity 30 Bits
H Self-Delimiting Complexity : : : : : : : : : : : : : : : 108 Bits
He Self-Delimiting Enumeration Complexity : 113 Bits

Part I

Technical Survey

13

15

\The mathematician's patterns, like the painter's or poet's, must be
beautiful; the ideas, like the colours or the words, must �t together
in a harmonious way. Beauty is the �rst test: there is no permanent
place in the world for ugly mathematics."

\A mathematician, like a painter or poet, is a maker of patterns.
If his patterns are more permanent than theirs, it is because they are
made with ideas."

|G. H. Hardy, A Mathematician's Apology1

\Two proofs are better than one."

\Look out for simple intuitive ideas: Can you see it at a glance?"

\Can you use the result, or the method, for some other problem?"

\Quite often, when an idea that could be helpful presents itself, we do
not appreciate it, for it is so inconspicuous. The expert has, perhaps,
no more ideas than the inexperienced, but appreciates more what he
has and uses it better."

\The future mathematician: : :should solve problems, choose the prob-
lems which are in his line, meditate upon their solution, and invent
new problems. By this means, and by all other means, he should en-
deavor to make his �rst important discovery: he should discover his
likes and his dislikes, his taste, his own line."

|G. Polya, How to Solve It

1See also: Robert Kanigel, The Man Who Knew In�nity: A Life of the Genius

Ramanujan, New York: Scribners (1991).

16 Part I|Survey

\If we marvel at the patience and the courage of the pioneers, we
must also marvel at their persistent blindness in missing the easier
ways through the wilderness and over the mountains. What human

perversity made them turn east to perish in the desert, when by going
west they could have marched straight through to ease and plenty?"

|Eric Temple Bell,

Mathematics: Queen & Servant of Science

\ `A mathematician's reputation rests on the number of bad proofs he
has given.' (Pioneer work is clumsy.)"

|A. S. Besicovitch quoted in
J. E. Littlewood, A Mathematician's Miscellany

\On revient toujours �a ses premi�eres amours."

[One always returns to one's �rst loves.]

|Mark Kac, Enigmas of Chance

\He who seeks for methods without having a de�nite problem in mind
seeks for the most part in vain."

|David Hilbert,

International Congress of Mathematicians,
Paris, 1900

\A theory is the more impressive the greater the simplicity of its
premises is, the more di�erent kinds of things it relates, and the more
extended is its area of applicability."

|Albert Einstein, Autobiographical Notes

TURING MACHINES

G. J. Chaitin

Abstract

We review the Turing machine version of a fundamental information-

theoretic incompleteness theorem, which asserts that it is di�cult to

prove that speci�c strings s have high Turing machine state complexity

Htm(s). We also construct a Turing machine \halting probability"
tm

with the property that the initial segments of its base-two expansion

asymptotically have the maximum possible Turing machine complexity

Htm.

1. Turing Machine Complexity Htm

Following [1], consider Turing machines with a single one-way in�nite

tape (in�nite to the right), a single read-write scanner, and a tape-

symbol alphabet consisting of blank, 0 and 1. Such an n-state 3-tape-

symbol Turing machine is de�ned by a 3�n table. This table gives the

action to be performed and the next state as a function of the current

state and the symbol currently being scanned on the tape. There are

six possible actions: write blank (erase tape), write 0, write 1, shift

tape left, shift tape right, or halt.

This chapter of the survey has not been published elsewhere.

17

18 Part I|Survey

De�ne the Turing machine complexity Htm(s) of a bit string s to

be the number of states in the smallest n-state 3-tape-symbol Turing

machine that starts with the scanner at the beginning of a blank tape

and halts with s written at the beginning of the tape, with the rest of

the tape blank, and with the scanner on the �rst blank square of the

tape.1

In [1] it is shown that the maximum possible Turing machine com-

plexity Htm(s) of an n-bit string s is asymptotic to n=2 log2 n. Fur-

thermore, most n-bit strings s have Turing machine complexity close

to n=2 log2 n. Equivalently, most 2n log2 n bit strings have Turing ma-

chine complexity close to n. Moreover, it is proposed in [1] that such

strings are \random"; for example, it is shown that in the limit of large

n such s have exactly the same relative frequency of 0's and 1's.

The sequel [2] considers random in�nite bit strings and laboriously

constructs an example, i.e., a speci�c in�nite string whose initial n-
bit segments have Turing machine complexity close to the maximum

possible, which is n=2 log2 n. As we show in Section 2, there is a much

better way to do this: via a halting probability.

2. The \Halting Probability"
tm

There are

n
(6n)3n

n!

n-state 3-tape-symbol Turing machines. The factor n on the left is to

specify the initial state. The exponent 3n is because there are that

many entries in the table de�ning the Turing machine. The base 6n is

because each of the 3n table entries speci�es one of six operations and

one of n states. The denominator n! is because any permutation of the
state numbers gives the same behavior.

log n! � n log n. Thus

log2(the total number of n-state Turing machines) � 2n log2 n:

1As will be discussed below, this de�nition illustrates our \linkage convention."

Turing Machines 19

De�ne

tm =
1X
n=1

�
of n-state Turing machines that halt

2dlog2(total # of n-state Turing machines)e

�
2�2dlog2 ne�1:

The factor of 2�2dlog2 ne�1 is in order to insure convergence; it is easy to

see that
P1

n=1 2
�2dlog2 ne�1 < 1. The denominator of (total # of n-state

Turing machines) is increased to the next highest power of two, so that

only straight-forward binary arithmetic is involved in calculating
tm.

If we knew the �rst 2n log2 n + o(n log n) bits of
tm, this would

enable us to solve the halting problem for all� n state Turing machines.

Thus the �rst � 2n log2 n bits of
tm tell us the Turing machine

complexity of each string with � 2n log2 n bits. Hence the Turing

machine complexity of the �rst 2n log2 n bits of
tm is asymptotic to

the maximum possible for a 2n log2 n bit string, which is � n. Thus

tm is a Turing-machine-random bit string and therefore a normal real

number in Borel's sense.

The construction of a complex in�nite string presented in this sec-

tion is much better than our original approach in [2, Section 7]. The

description in this section is very concise. For more details, see the

analogous discussion for LISP in [3, Sections 4, 7 and 9].

3. Proving Lower Bounds on Htm

We will measure the complexity of a formal system by the number of

states needed for a proof-checker.

We need a Turing machine linkage convention and should only mea-

sure the size of Turing machine programs that obey this linkage con-

vention. A good convention is that nothing to the left of the position

of the scanner upon entry to a subroutine is ever read or altered by

the subroutine. This makes it possible for the calling routine to save

information on the tape. One problem with Turing machines is that a

subroutine can be called from only one place, because the return ad-

dress must be \wired" into the subroutine as a �xed state number to

return to after �nishing.

Theorem: An n-state formal system cannot prove that a speci�c

bit string has Turing machine complexity > n+O(log n).

20 Part I|Survey

The \O(log n)" here is because we can run a formal system's proof-

checker to get theorems, but the proof-checker does not tell us how

many states it has, i.e., what its Turing machine complexity is.2

Proof (Original Version): Suppose we are given a n-state Turing

machine for checking purported proofs in a formal system. The output

is either a message that the proof is incorrect, or else the theorem

established by the proof. We assume that the proof-checker is coded

in such a way that it can be invoked as a subroutine, i.e., it obeys the

linkage conventions we discussed above. We add blog2 kc + c states to
tell us an arbitrary natural number k that we will determine later, and

c0 more states that keep calling the proof-checker until we �nd a proof

that a speci�c bit string s has Turing machine state complexity > k.

Then we output s and halt. This gives us a Turing machine with

n + blog2 kc+ c+ c0

states that produces a string s with Turing machine complexity

> k:

That is, there is a Turing machine with

� n+ log2 k + c+ c0

states that produces a string s with Turing machine complexity

> k:

Let us take

k = n+ log2 n+�+ c+ c0;

which must be an integer. Thus there is a Turing machine with

� n+ log2(n + log2 n+�+ c+ c0) + c+ c0

2One could (but we won't) add to our Turing machines a way to write on the
tape the current state number. This could then be used to determine the size
of a program by subtracting the initial state from the �nal state. In fact, real
computers can get a return address for a subroutine into a register, so that the
subroutine knows where to branch after it is �nished.

Turing Machines 21

states that produces a string s with Turing machine complexity

> n+ log2 n +�+ c+ c0:

This implies that

n+ log2 n+�+ c+ c0 < n+ log2(n+ log2 n+�+ c+ c0) + c+ c0:

I.e.,

log2 n+� < log2(n+ log2 n+�+ c+ c0);

or

� < log2

1 +

log2 n+�+ c+ c0

n

!
:

We may assume that n is greater than or equal to 1. From this it is easy

to see that (log2 n)=n is always less than or equal to 1. This implies

that

� < log2

1 +

log2 n+�+ c + c0

n

!
� log2(1 + 1 +�+ c+ c0):

Hence

� < log2(1 + 1 +�+ c+ c0):

Clearly, this last inequality can hold for at most �nitely many values of

�. More precisely, it implies that � < c00, where c00 does not depend on
the complexity n of the proof-checker. Thus an n-state formal system

can establish that a speci�c bit string has complexity

> k = n+ log2 n+�+ c+ c0

only if � < c00. I.e., an n-state formal system cannot establish that a

speci�c bit string has complexity

> n + log2 n+ c00 + c+ c0:

Q.E.D.

These inequalities are obvious if viewed properly. We are talking

about the size of the base-two numeral for n. How much can this grow

if we add it to its own size? For all su�ciently large n, this size, which

22 Part I|Survey

is blog2 nc + 1, is much less than n. Therefore the number of bits to

express this size is much less than the number of bits to express n.

(More precisely, the number of bits in the base-two numeral for the

number of bits in n is in the limit a vanishing fraction of the number of

bits in the base-two numeral for n.) So when the size of the base-two

numeral for n is added to n, the base-two numeral for the result will

usually be the same size as the base-two numeral for n. At most one

bit is added to its size in the unlikely event that over
ow occurs (i.e.,

a carry out of the left-most non-zero bit position).

History: This was my very �rst information-theoretic incomplete-

ness theorem [4, 5]. The only di�erence is that here I spell out all the

inequalities.

4. Proving Lower Bounds II

Here is an arrangement of the proof that avoids the messy inequalities.

Proof (Improved Version): Suppose we are given an n-state

Turing machine for checking purported proofs in a formal system. The

output is either a message that the proof is incorrect, or else the theorem

established by the proof. We assume that the proof-checker is coded in

such a way that it can be invoked as a subroutine. We add blog2 kc+ c
states to tell us an arbitrary natural number k that we will determine

later, and c0 more states that keep calling the proof-checker until we

�nd a proof that a speci�c bit string s has Turing machine complexity

> k + blog2 kc+ c. Then we output s and halt.

This gives us a Turing machine with

n + blog2 kc+ c+ c0

states that produces a string s with Turing machine complexity

> k + blog2 kc+ c:

Taking k = n+ c0, we have a Turing machine with

n+ blog2(n+ c0)c+ c+ c0

states that produces a string s with Turing machine complexity

> n+ c0 + blog2(n+ c0)c+ c;

Turing Machines 23

which is impossible. Thus an n-state formal system cannot establish

that a speci�c bit string has complexity

> n + c0 + blog2(n+ c0)c+ c = n+O(log n):

Q.E.D.

It is much easier to formulate this information-theoretic incomplete-

ness theorem in LISP [3, Section 3]. The LISP result is also much

sharper.

References

[1] G. J. Chaitin, \On the length of programs for computing �nite

binary sequences," Journal of the ACM 13 (1966), 547{569.

[2] G. J. Chaitin, \On the length of programs for computing �nite

binary sequences: statistical considerations," Journal of the ACM

16 (1969), 145{159.

[3] G. J. Chaitin, \LISP program-size complexity II," Applied

Mathematics and Computation, in press.

[4] G. J. Chaitin, \Computational complexity and G�odel's incom-

pleteness theorem," Abstract 70T{E35, AMS Notices 17 (1970),

672.

[5] G. J. Chaitin, \Computational complexity and G�odel's incom-

pleteness theorem," ACM SIGACT News 9 (April 1971), 11{12.

24 Part I|Survey

BLANK-ENDMARKER

PROGRAMS

G. J. Chaitin

Abstract

We review four di�erent versions of the information-theoretic incom-

pleteness theorem asserting that it is di�cult to prove that speci�c

strings s have high blank-endmarker complexity Hb(s). We also con-

struct a blank-endmarker \halting probability"
b with the property

that the initial segments of its base-two expansion asymptotically have

the maximum possible blank-endmarker complexity Hb.

1. Blank-Endmarker Complexity Hb

Following [1, Appendix], we de�ne the abstract setting.

A computer C is a partial recursive function that maps a program

p that is a bit string into an output C(p) that is also an individual bit

string. The complexityH
C
(x) of the bit string x based on the computer

C is the size in bits jpj of the smallest program p for computing x with

This chapter of the survey has not been published elsewhere.

25

26 Part I|Survey

C:

H
C
(x) = min

C(p)=x
jpj:

De�ne a universal computer U as follows:

U(p1

i 0'sz }| {
000 � � � 000) = C

i
(p):

Here C
i
is the computer with G�odel number i, i.e., the ith computer.

Hence

H
U
(x) � H

Ci
(x) + (i+ 1)

for all strings x. The general de�nition of a universal computer U is

that it is one that has the property that for each computer C there is

a constant sim
C
(the cost in bits of simulating C) such that

H
U
(x) � H

C
(x) + sim

C

for all x. The universal computer U we de�ned above satis�es this de�-

nition with sim
Ci
= i+1. We pick this particular universal computer U

as our standard one and de�ne the blank-endmarker complexity Hb(x)
to be H

U
(x):

Hb(x) = H
U
(x):

2. Discussion

The �rst thing to do with a new complexity measure is to determine

the maximum complexity that an n-bit string can have and whether

most n-bit strings have close to this maximum complexity. Consider

the identity-function computer C with C(p) = p for all programs p.
This shows that

Hb(s) � jsj+ sim
C

for all strings s. Do most n-bit s have complexity close to n? Yes,

because there are 2n n-bit strings s but only

1 + 2 + 4 + � � �+ 2n�k�1 =
X

j<n�k
2j = 2n�k � 1 < 2n�k

programs p for U of size less than n� k.

Blank-Endmarker Programs 27

3. The \Halting Probability"
b

In Section 2 we saw that most �nite bit strings are complex. How about

constructing an in�nite bit string with complex initial segments?

Let
P

n
2�f(n) � 1, e.g., f(n) = 2dlog2 ne+ 1 = O(log n).

De�ne

b =
X
n

#fprograms p of size n such that U(p) haltsg2�n�f(n):

Then 0 �
b � 1 because there are 2n n-bit programs p. I.e.,

b �
X
n

2n 2�n�f(n) =
X
n

2�f(n) � 1:

Hence the blank-endmarker complexity of the �rst n+ f(n) bits of

b is greater than or equal to n� c.
From this it can be shown that
b is what Borel called a normal

real number.

The description in this section is very concise. For more details, see

the analogous discussion for LISP in [2, Sections 4, 7 and 9].

4. Proving Lower Bounds on Hb

Now let's do some metamathematics using the complexity measureHb.

We consider a �xed set of rules of inference F to be a recursively

enumerable set of ordered pairs of the form A ` T indicating that the

theorem T follows from the axiom A. (We may consider the axiom A
to be represented as a bit string via some standard binary encoding.)

Theorem A: Consider a formal system F
A
consisting of all theo-

rems T derived from a single axiomA� n bits in size by applying to it a
�xed set of rules of inference. This formal system F

A
of size � n cannot

prove that a speci�c string has blank-endmarker complexity > n+ c.
Proof: Consider a special-purpose computer C that does the fol-

lowing when given the axiom A of a formal system F
A
followed by a 1

and any number of 0's:

C(A1

k 0'sz }| {
000 � � � 000) =

(
The �rst speci�c string s?

that can be shown in FA to have

complexity> jAj+ 2k+ 1.

28 Part I|Survey

How does C accomplish this? Given the program p, C counts the

number k of 0's at the right end of p. It then removes them and the

rightmost 1 bit in order to obtain the axiom A. Now C knows A and

k. C then searches through all proofs derived from the axiom A in size

order, and among those of the same size, in some arbitrary alphabetical

order, applying the proof-checking algorithm associated with the �xed

rules of inference to each proof in turn. (More abstractly, C enumerates

F
A
= fT : A ` T g.) In this manner C determines each theorem T

that follows from the axiom A. C examines each T until it �nds one of

the form

\Hb(s
?) > j"

that asserts that a speci�c bit string s? has blank-endmarker complexity

greater than a speci�c natural number j that is greater than or equal

to jAj+ 2k + 1. C then outputs s? and halts. This shows that

jAj+ 2k + 1 < Hb(s
?) � jA1

k 0'sz }| {
000 � � � 000 j+ sim

C
:

I.e.,

jAj+ 2k + 1 < Hb(s
?) � jAj+ 1 + k + sim

C
:

This implies

k < sim
C
:

Taking k = sim
C
, we have a contradiction. It follows that s? cannot

exist for this value of k. The theorem is therefore proved with c =

2k + 1 = 2sim
C
+ 1. Q.E.D.

Here is a stronger version of Theorem A.

Theorem B: Consider a formal system F
A
consisting of all theo-

rems T derived from a single axiomA with blank-endmarker complexity

� n by applying to it a �xed set of rules of inference. This formal sys-

tem F
A
of blank-endmarker complexity� n cannot prove that a speci�c

string has blank-endmarker complexity > n + c.

Proof: Instead of being given A directly, C is given an Hb(A) bit
program p

A
for U to compute A. I.e., C's program p is now of the form

p0 = p
A
1

k 0'sz }| {
000 � � � 000

Blank-Endmarker Programs 29

instead of

p = A1

k 0'sz }| {
000 � � � 000 :

Here

jp
A
j = Hb(A);

and

U(p
A
) = A:

So now we have

jp0j = Hb(A) + 1 + k

instead of

jpj = jAj+ 1 + k:

And now

C(p0) = s?

and

Hb(s
?) > Hb(A) + 2k + 1:

Hence we have

Hb(A) + 2k + 1 < Hb(s
?) � Hb(A) + 1 + k + sim

C
:

This yields a contradiction for k = sim
C
. Q.E.D.

Theorems A and B are sharp; here is the converse.

Theorem C: There is a formal system F
A
with n-bit axiomsA that

enables us to determine:

(a) which bit strings have blank-endmarker complexity � n, and

(b) the exact blank-endmarker complexity of each bit string with

blank-endmarker complexity < n.

Proof: Here are two axioms A from which we can deduce the de-

sired theorems:

(a) The n-bit string that is the base-two numeral for the number of

programs p of size < n that halt.

30 Part I|Survey

(b) p1000 � � � 000, the program p of size < n that takes longest to halt

(there may be several) padded on the right to exactly n bits with

a 1 bit and the required (possibly zero) number of 0 bits.

Q.E.D.

Here is a corollary of the ideas presented in this section. An n +

O(1) bit formal system is necessary and su�cient to settle the halting

problem for all programs of size less than n bits. For a detailed proof,

see [3, Theorem 4.4].

5. Enumeration Complexity Hbe

Following [3], we extend the formalism that we presented in Section 1

from �nite computations with a single output to in�nite computations

with an in�nite amount of output. So let's now consider computers

that never halt, which we shall refer to as enumeration computers, or

e-computers for short. An e-computer C is given by a computable

function that maps the program p and the time t into the �nite set of

bit strings that is the output C(p; t) of C at time t with program p. The
total output C(p) produced by e-computer C when running program p
is then de�ned to be

C(p) =
1[
t=0

C(p; t):

The complexity H
C
(S) of the set S based on the e-computer C is the

size in bits jpj of the smallest program p for enumerating S with C:

H
C
(S) = min

C(p)=S
jpj:

De�ne a universal e-computer Ue as follows:

Ue(p1

i 0'sz }| {
000 � � � 000) = C

i
(p):

Here C
i
is the e-computer with G�odel number i, i.e., the ith e-computer.

Hence

H
Ue
(S) � H

Ci
(S) + (i+ 1)

Blank-Endmarker Programs 31

for all S. The general de�nition of a universal e-computer U is that

it is one that has the property that for each e-computer C there is a

constant sim
C
(the cost in bits of simulating C) such that

H
U
(S) � H

C
(S) + sim

C

for all S. The universal e-computer Ue we de�ned above satis�es this

de�nition with sim
Ci

= i + 1. We pick this particular universal e-

computer Ue as our standard one and de�ne the blank-endmarker e-

complexity1 Hbe(S) to be HUe
(S):

Hbe(S) = H
Ue
(S):

In summary, the blank-endmarker e-complexity Hbe(S) of a

recursively-enumerable set S is the size in bits jpj of the smallest com-

puter program p that makes our standard universal e-computer Ue enu-

merate the set S.

6. Proving Lower Bounds II

Now we reformulate Theorem B using the concepts of Section 5.

Theorem D: Consider a formal system consisting of a recursively

enumerable set T of theorems. Suppose that Hbe(T) � n. This formal

system T of blank-endmarker e-complexity � n cannot prove that a

speci�c string has blank-endmarker complexity> n+c. More precisely,

if a theorem of the form \Hb(s) > n" is in T only if it is true, then

\Hb(s) > n" is in T only if n < Hbe(T) + c.

Note that Hbe(T) combines the complexity of the axioms and the

rules of inference in a single number; it is therefore a more natural and

straight-forward measure of the complexity of a formal system than the

one that we used in Section 4.

Proof: In the proof of Theorem B, let p
A
now be p

T
, a minimal-size

program for enumerating the set T of theorems. To cut a long story

short, this time we have C(p) = s? and

Hb(s
?) > Hbe(T) + 2k + 1

1In full, this is the \blank-endmarker enumeration complexity."

32 Part I|Survey

with

p = p
T
1

k 0'sz }| {
000 � � � 000

of length

jpj = Hbe(T) + 1 + k:

Hence

Hbe(T) + 2k + 1 < Hb(s
?) � Hbe(T) + 1 + k + sim

C
:

This yields a contradiction for k = sim
C
. Q.E.D.

7. Hb versus Hbe

Note that the blank-endmarker e-complexity of a singleton set fxg is
essentially the same as the blank-endmarker complexity of the string

x:
Hbe(fxg) = Hb(x) +O(1):

Proof: There is a special-purpose e-computer C such that

C(p) = fU(p)g:

(Just forget to halt!) This shows that

Hbe(fxg) � Hb(x) + c:

On the other hand, there is a special-purpose computer C 0 such that

C 0(p) = the �rst string output by Ue(p).

This shows that

Hb(x) � Hbe(fxg) + c0:

Q.E.D.
What about �nite sets instead of singleton sets? Well, we can de�ne

the blank-endmarker complexity of a �nite set S as follows:

Hb(S) = Hb(
X
x2S

2x):

Blank-Endmarker Programs 33

Here we associate the kth string x with the natural number k, i.e., if the

kth string is in the set S, then 2k is in the sum
P

x2S 2
x. This trickery

conceals the essential idea, which is that Hb(S) is the minimumnumber

of bits needed to tell our standard computer U how to write out S and

halt, whereas Hbe(S) is the minimum number of bits needed to tell our

standard computer Ue how to enumerate S but never halt, so that we

are never sure if the last element of S has been obtained or not.

Enumerating S is easier than computing S, sometimesmuch easier.

More precisely,

Hbe(S) � Hb(S) + c:

And

�(n) = max
S �nite

Hbe(S) � n

Hb(S);

which measures the extent to which it is easier to enumerate �nite sets

than to compute them, grows faster than any computable function of

n. In fact, it is easy to see that � grows at least as fast as the function

� de�ned as follows:

�(n) = max
Hb(x)�n

x:

More precisely, there is a c such that for all n,

�(n+ c) � �(n):

Proof Sketch: Consider the set

f0; 1; 2; : : : ;�(�(n))g

of all natural numbers up to �(�(n)). This set has blank-endmarker

complexity roughly equal to �(n), but its e-complexity is very small.

In fact, given the natural number n, one can enumerate this set, which

shows that its blank-endmarker e-complexity is � log2 n+ c. Q.E.D.
Here are three related functions �1, �2 and �3 that also grow very

quickly [4]:

�1(n) = max
S �nite

Hb(S) � n

#S:

34 Part I|Survey

Here, as in Section 3, #S is the cardinality of the �nite set S.

�2(n) = max
S �nite

Hbe(S) � n

#S:

Last but not least,

�3(n) = max
S �nite

Hbe(S) � n

#S:

Here S is the complement of the set S, i.e., the set of all bit strings

that are not in S.

8. Proving Lower Bounds III

It is possible to sustain the view that e-complexity is more fundamental

than normal complexity.2 If so, here is how to reformulate Theorem D:

Theorem E: Consider a formal system consisting of a recursively

enumerable set T of theorems. Suppose that Hbe(T) � n. This for-

mal system T of blank-endmarker e-complexity � n cannot prove that

a speci�c string, considered as a singleton set, has blank-endmarker

e-complexity > n + c. More precisely, if a theorem of the form

\Hbe(fsg) > n" is in T only if it is true, then \Hbe(fsg) > n" is

in T only if n < Hbe(T) + c.

References

[1] G. J. Chaitin, \Information-theoretic computational complex-

ity," IEEE Transactions on Information Theory IT{20 (1974),

10{15.

[2] G. J. Chaitin, \LISP program-size complexity II," Applied

Mathematics and Computation, in press.

[3] G. J. Chaitin, \Information-theoretic limitations of formal sys-

tems," Journal of the ACM 21 (1974), 403{424.

2This view is strongly supported by the incompleteness theorems in [5], which
use self-delimiting e-complexity instead of blank-endmarker e-complexity.

Blank-Endmarker Programs 35

[4] G. J. Chaitin, \Program size, oracles, and the jump operation,"

Osaka Journal of Mathematics 14 (1977), 139{149.

[5] G. J. Chaitin, \Information-theoretic incompleteness," Applied

Mathematics and Computation, in press.

36 Part I|Survey

LISP PROGRAM-SIZE

COMPLEXITY1

Applied Mathematics and Computation

49 (1992), pp. 79{93

G. J. Chaitin

Abstract

A theory of program-size complexity for something close to real LISP is

sketched.

1This paper should be called \On the length of programs for computing �nite
binary sequences in LISP," since it closely follows references [3] to [6]. But that's
too long!

Copyright c
 1992, Elsevier Science Publishing Co., Inc., reprinted by permission.

37

38 Part I|Survey

1. Introduction

The complexity measure used in algorithmic information theory [1] is

somewhat abstract and elusive. Instead of measuring complexity via

the size in bits of self-delimiting programs for a universal Turing ma-

chine as is done in [1], it would be nice to use instead the size in

characters of programs in a real computer programming language.

In my book Algorithmic Information Theory [1] I make considerable

use of a toy version of pure LISP constructed expressly for theoretical

purposes. And in Section 5.1 [1], \Complexity via LISP Expressions,"

I outline a theory of program-size complexity de�ned in terms of the

size of expressions in this toy LISP. However, this toy LISP is rather

di�erent from real LISP; furthermore gruesome estimates of the number

of S-expressions of a given size (Appendix B [1]) are required.

One can develop a theory of program-size complexity for something

close to real LISP; we sketch such a theory here. It was pointed out

in [2] that this is a straightforward application of the methods used

to deal with bounded-transfer Turing machines in [3{6]. In fact, the

results in this paper closely follow those in my two earliest publications

on algorithmic information theory, the two AMS abstracts [3, 4] (also

reprinted in [2]), but restated for LISP instead of bounded-transfer

Turing machines.

2. Pr�ecis of LISP

Our basic LISP reference is [7]. So we have a LISP that includes

integers. Otherwise, we pretty much restrict ourselves to the pure

LISP subset of LISP 1.5, so there are no side-e�ects. In addi-

tion to the usual LISP primitives CAR, CDR, CONS, EQ, ATOM, COND,

QUOTE, LAMBDA, NIL and T, we need some more powerful built-in

functions, which are described below.

We shall principally be concerned with the size in characters of

programs for computing �nite binary sequences, i.e., bit strings. The

convention we shall adopt for representing bit strings and character

strings is as follows. A bit string shall be represented as a list of the

integers 0 and 1. Thus the bit string 011 is represented by the 7-

LISP Program-Size Complexity 39

character LISP S-expression (0 1 1). Similarly, a character string is

represented as a list of integers in the range from 0 to 255, since we

assume that each character is a single 8-bit byte. Notation: jbit stringj
or jcharacter stringj denotes the number of bits or characters in the

string.

LENGTH

Given a list, this function returns the number of elements in the list

(an integer).

FLATTEN

This is easy enough to de�ne, but let's simplify matters by assuming

that it is provided. This
attens an S-expression into the list of its

successive atoms. Thus

(FLATTEN(QUOTE(A(BB(CCC)DD)E)))

evaluates to

(A BB CCC DD E)

EVAL

Provides a way to evaluate an expression that has been constructed,

and moreover to do this in a clean environment, that is, with the initial

association list.

EVLIS

Evaluates a list of expressions and returns the list of values. Applies

EVAL to each element of a list and CONS's up the results.

TIME-LIMITED-EVAL

This built-in function provides a way of trying to evaluate an expression

for a limited amount of time t. In the limit as t goes to in�nity, this

40 Part I|Survey

will give the correct value of the expression. But if the expression

does not have a value, this provides a way of attempting to evaluate

it without running the risk of going into an in�nite loop. In other

words, TIME-LIMITED-EVAL is a total function, whereas normal EVAL is

a partial function (may be unde�ned and have no value for some values

of its argument.)

(TIME-LIMITED-EVAL plays a crucial role in [1], where it is used to

compute the halting probability
.)

CHARACTER-STRING

Writes a LISP S-expression into a list of characters, that is, a list of

integers from 0 to 255. In other words, this built-in function converts

a LISP S-expression into its print representation.

S-EXPRESSION

Reads a LISP S-expression from a list of characters, that is, a list of in-

tegers from 0 to 255. In other words, this built-in function converts the

print representation of a LISP S-expression into the LISP S-expression.

CHARACTER-STRING and S-EXPRESSION are inverse functions.

These two built-in functions are needed to get access to the indi-

vidual characters in the print representation of an atom. (In [1] and [9,

10] we program out/de�ne both of these functions and do not require

them to be built-in; we can do this because in [1] atoms are only one

character long.)

3. De�nition of Complexity in LISP

HLISP(x) � min
EVAL(e)=x

jej

That is, HLISP(x) is the size in characters jej of the smallest S-expression

e (there may actually be several such smallest expressions) that evalu-

ates to the S-expression x. We usually omit the subscript LISP.

LISP Program-Size Complexity 41

Here e must only be self-contained LISP expressions without per-

manent side-e�ects. In other words, any auxiliary functions used must

be de�ned locally, inside e. Auxiliary function names can be bound to

their de�nitions (LAMBDA expression) locally by using LAMDBA binding.

Here is an example of a self-contained LISP expression, one containing

de�nitions of APPEND and FLATTEN:2

((LAMBDA (APPEND FLATTEN)

(FLATTEN (QUOTE (A (BB (CCC) DD) E))))

(QUOTE (LAMBDA (X Y) (COND ((ATOM X) Y)

(T (CONS (CAR X) (APPEND (CDR X) Y))))))

(QUOTE (LAMBDA (X) (COND ((ATOM X) (CONS X NIL))

((ATOM (CDR X)) X)

(T (APPEND (FLATTEN (CAR X)) (FLATTEN (CDR X)))))))

)

The value of this expression is (A BB CCC DD E).

4. Subadditivity of Bit String Complexity

One of the most fundamental properties of the LISP program-size com-

plexity of a bit string is that it is subadditive. That is, the complexity of

the result of concatenating the non-null bit strings s1; : : : ; sn is bounded

by the sum of the individual complexities of these strings. More pre-

cisely,

H(s1 � � � sn) �
nX

k=1

H(s
k
) + c; (4:1)

where the constant c doesn't depend on how many or which strings s
k

there are.

Why is this so? Simply, because we need only add c more characters

in order to \stitch" together the minimal-size expressions for s1; : : : ; sn
into an expression for their concatenation. In fact, let e1; : : : ; en be the
respective minimal-size expressions for s1; : : : ; sn. Consider the follow-

ing LISP expression:

(FLATTEN(EVLIS(QUOTE(e1 � � � en)))) (4:2)

2Although we actually are taking FLATTEN to be built-in.

42 Part I|Survey

Recall that the built-in function FLATTEN
attens an S-expression into

the list of its successive atoms, and that EVLIS converts a list of expres-

sions into the list of their values. Thus this S-expression (4.2) evaluates

to the bit string concatenation of s1; : : : ; sn and shows that

H(s1 � � � sn) �
nX

k=1

je
k
j+ 25 =

nX
k=1

H(s
k
) + c:

This S-expression (4.2) works because we require that each of the

e
k
in it must be a self-contained LISP S-expression with no side-e�ect;

that is the de�nition of the LISP program-size complexityHLISP. This

S-expression also works because of the self-delimiting LISP syntax of

balanced parentheses. That is, the e
k
are separated by their delimiting

parentheses in (4.2), and do not require blanks to be added between

them as separators.

One small but annoying detail is that blanks would have to be

added to separate the e
k
in (4.2) if any two successive e

k
were atoms,

which would ruin our inequality (4.1). There is no problem if all of the

e
k
are lists, because then they all begin and end with parentheses and

do not require added blanks. Does our LISP initially bind any atoms

to bit strings, which are lists of 0's and 1's? Yes, because although the

initial association list only binds NIL to NIL and T to T, NIL is the null

bit string! That is why we stipulate that the bit strings s
k
in (4.1) are

non-null.

5. A Minimal Expression Tells Us Its Size

As Well As Its Value

Symbolically,

H(x;H(x)) = H(x) +O(1):

That is, suppose that we are given a quoted minimal-size expression e

for x. Then of course we can evaluate e using EVAL to get x. And we can
also convert e into the list of characters that is e's print representation
and then count the number of characters in e's print representation.

This gives us jej, which is equal to the complexity H(x) of x.

LISP Program-Size Complexity 43

More formally, let e be a minimal-size expression for x. Then the
following expression, which is only c characters longer than e, evaluates
to the pair consisting of x and H(x):

((LAMBDA (X) (CONS (EVAL X)

(CONS (LENGTH (CHARACTER-STRING X))

NIL)))

(QUOTE e))

Thus

H(x;H(x)) � H(x) + c:

Conversely, let e be a minimal-size expression for the pair consist-

ing of x and H(x). Then the following expression, which is only c0

characters longer than e, gives us x:

(CAR e)

Thus

H(x) � H(x;H(x)) + c0:

The fact that an expression can tell us its size as well as its value

will be used in Section 9 to show that most n-bit strings have close to
the maximum possible complexity maxjsj=nH(s).

6. Lower Bound on Maximum Complexity

max
jsj=n

H(s) � n=8:

To produce each of the 2n bit strings of length n, we need to evaluate

the same number of S-expressions, some of which must therefore have

at least n=8 characters. This follows immediately from the fact that we

are assuming that each character in the LISP character set is a single

8-bit byte 0{255.

44 Part I|Survey

7. Upper Bounds on Maximum Complex-

ity

Consider an arbitrary n-bit string s whose successive bits are b1; : : : ; bn.

Consider the LISP expression

(QUOTE(b1 : : : bn))

Here the individual bits b
i
in the bit string s of length n are separated

by blanks. The value of this expression is of course the list of bits

in s. Since this expression is 2n + 8 characters long, this shows that

H(s) � 2n+ 8. Hence

max
jsj=n

H(s) � 2n + c:

Let us do slightly better, and change the coe�cient from 2 to 1/2.

This can be done by programming out hexadecimal notation. That is,

we use the digits from 0 to 9 and the letters from A to F to denote the

successive quadruples of bits from 0000 to 1111. Thus, for example,

(

big function de�nitionz }| {
(LAMBDA(X): : :)(QUOTE(F F F F)))

will evaluate to the bit string consisting of sixteen 1's. Hence each

group of 4 bits costs us 2 characters, and we have

max
jsj=n

H(s) � n=2 + c0;

but with a much larger constant c0 than before.

Final version: let us compress the hexadecimal notation and elimi-

nate the alternating blanks. Form the name of an atom by appending

the hexadecimal digits as a su�x to the pre�x HEX. (The pre�x is re-

quired because the name of an atom must begin with a letter, not a

digit.) Then we can retrieve the hex digits packed into the name of this

atom by using the CHARACTER-STRING built-in:

(

bigger function de�nitionz }| {
(LAMBDA(X): : :) (CHARACTER-STRING(QUOTE HEXFFFF)))

LISP Program-Size Complexity 45

will again evaluate to the bit string consisting of sixteen 1's. Now each

group of 4 bits costs us only one character, and we have

max
jsj=n

H(s) � n=4 + c00;

with a constant c00 that is even slightly larger than before.

8. Smoothness of Maximum Complexity

Consider an n-bit string S of maximum complexity. Divide S into

bn=kc successive nonoverlapping bits strings of length k with one string
of length < k left over.

Then, by the subadditivity of bit string complexity (4.1), we have

H(S) � bn=kcmax
jsj=k

H(s) + max
jsj<k

H(s) + c;

where c is independent of n and k. Hence

max
jsj=n

H(s) � bn=kcmax
jsj=k

H(s) + c0
k
;

where the constant c0 now depends on k but not on n. Dividing through
by n and letting n!1, we see that

lim sup
n!1

1

n
max
jsj=n

H(s) � 1

k
max
jsj=k

H(s):

However, we already know that maxjsj=nH(s)=n is � 1=8 and � 1=4 +

o(1). Hence the limit of maxjsj=nH(s)=n exists and is � 1=8 and � 1=4.
In summary, maxjsj=nH(s) is asymptotic from above to a real constant,

which we shall henceforth denote by �, times n:

max
jsj=n

H(s) � �n

max
jsj=n

H(s) � �n (8:1)

:125 � � � :250

46 Part I|Survey

9. Most N-bit Strings Have Close to Max-

imum Complexity

Padding Lemma. We shall need the following \padding lemma": Any

S-expression e0 of size � k can be \padded" into an expression e of size

k + 18 that has exactly the same value as e0.

Proof. Here is how to pad e0 into e:

((LAMBDA(X Y)Y)

k + 1� je0j
digit 9'sz }| {

999: : :999 e0)

Here there are exactly k + 1 � je0j consecutive digit 9's. The constant
18 is because the size in characters of the minimum padding

((LAMBDA(X Y)Y)9)

is precisely 18. Correction: The next to e0 becomes a 9 if e0 is in

()'s|it stays a blank if e0 is an atom.

Our main result in this section is that the number of n-bit strings
x having complexity H(x) less than or equal to

max
jsj=n

H(s)�max
jsj=k

H(s)� c� 18 (9:1)

is less than

2n�k : (9:2)

Assume on the contrary that the number of n-bit strings x having

complexity H(x) less than or equal to (9.1) is greater than or equal to

(9.2). From this we shall obtain a contradiction by showing that any

n-bit string has complexity less than maxjsj=nH(s).

Here is how to produce an arbitrary n-bit string with a LISP expres-

sion of size less than maxjsj=nH(s). The LISP expression is made by

putting together two pieces: a quoted expression e that was originally

of size less than or equal to (9.1) that has been padded to exactly size

max
jsj=n

H(s) �max
jsj=k

H(s)� c

LISP Program-Size Complexity 47

and whose value is an n-bit string, and an expression e0 of size

� max
jsj=k

H(s)

whose value is an arbitrary k-bit string.
From the quoted expression e we immediately obtain its size

jej = LENGTH(CHARACTER-STRING(e))

and its value EVAL(e), as in Section 5. Note that jej � 18 is exactly

(9.1). Next we generate all character strings of size � jej � 18, and

use S-EXPRESSION to convert each of these character strings into the

corresponding LISP S-expression. Then we use TIME-LIMITED-EVAL on

each of these S-expressions for longer and longer times, until we �nd

the given n-bit string EVAL(e). Suppose that it is the jth n-bit string
that we found to be the value of an S-expression of size � jej � 18.

Finally we concatenate the jth bit string of size n�k with the k-bit
string EVAL(e0) produced by e0. The result is an n-bit string S, which by
hypothesis by suitable choice of e and e0 can be made to be any one of

the 2n possible n-bit strings, which turns out to be impossible, because

it gives a LISP expression that is of size less than maxjsj=nH(s) for the

n-bit string S.
Why?

The process that we described above can be programmed in LISP

and then carried out by applying it to e and e0 as follows:

(

very big function de�nitionz }| {
(LAMBDA(X Y): : :) (QUOTE e)| {z }

eventually

gives arbitrary

n� k bit string

directly

gives arbitrary

k bit stringz}|{
e0)

This LISP S-expression, which evaluates to an arbitrary n-bit string S,
is a (large) constant number c0 of characters larger than jej+ je0j. Thus

H(S) � jej+je0j+c0 �

max
jsj=n

H(s)�max
jsj=k

H(s)� c
!
+

max
jsj=k

H(s)

!
+c0:

48 Part I|Survey

And so

H(S) � max
jsj=n

H(s) � c+ c0 < max
jsj=n

H(s)

if we choose the constant c in the statement of the theorem to be c0+1.

10. Maximum Complexity Strings Are

Random

Consider a long n-bit string s in which the relative frequency of 0's

di�ers from 1=2 by more than �. Then

HLISP(s) � �H

�
1

2
+ �;

1

2
� �

�
n+ o(n):

Here

H(p; q) � �p log2 p� q log2 q;
where

p + q = 1; p � 0; q � 0:

More generally, let the n-bit string s be divided into bn=kc successive
k-bit strings with one string of < k bits left over. Let the relative

frequency of each of the 2k possible blocks of k bits be denoted by

p1; : : : ; p2k . Then let k and � be �xed and let n go to in�nity. If one

particular block of k bits has a relative frequency that di�ers from 2�k

by more than �, then we have

HLISP(s) � �H
�
1

2k
+ �;

1

2k
� �

2k � 1
; � � � ; 1

2k
� �

2k � 1

�
n

k
+ o(n):

Here

H(p1; : : : ; p2k) � �
2kX
i=1

p
i
log2 pi;

where
2kX
i=1

p
i
= 1; p

i
� 0:

LISP Program-Size Complexity 49

The notation may be a little confusing, because we are simultane-

ously usingH for our LISP complexitymeasure and for the Boltzmann{

Shannon entropy H! Note that in the de�nition of the Boltmann{

Shannon H, any occurrences of 0 log2 0 should be replaced by 0.

The Boltzmann{Shannon entropy function achieves its maximum

value of log2 of the number of its arguments if and only if the probability

distribution p
i
is uniform and all probabilities p

i
are equal. It follows

that a maximum complexity n-bit string s must in the limit as n goes

to in�nity have exactly the same relative frequency of each possible

successive block of k bits (k �xed).

How does one prove these assertions?

The basic idea is to use a counting argument to compress a bit

string s with unequal relative frequencies into a much shorter bit string

s0. Then the smoothness of the maximum complexity (8.1) shows that

the original string s cannot have had maximum complexity.

For the details, see [5, 6]. Here is a sketch.

Most bit strings have about the same number of 0's and 1's, and also

about the same number of each of the 2k possible successive blocks of k

bits. Long strings for which this is not true are extremely unusual (the

law of large numbers!), and the more unequal the relative frequencies

are, the more unusual it is. Since not many strings have this unusual

property, one can compactly specify such a string by saying what is its

unusual property, and which of these unusual strings it is. The latter is

speci�ed by giving a number, the string's position in the natural enu-

meration of all the strings with the given unusual property. So it boils

down to asking how unusual the property is that the string has. That

is, how many strings share its unusual property? To answer this, one

needs estimates of probabilities obtained using standard probabilistic

techniques; for example, those in [8].

11. Properties of Complexity That Are

Corollaries of Randomness

Let's now resume the discussion of Section 8. Consider an n-bit string S

of maximum complexity maxjsj=nH(s). Divide S into bn=kc successive

50 Part I|Survey

k-bit strings with one < k bit string left over. From the preceding

discussion, we know that if k is �xed and we let n go to in�nity, in

the limit each of the 2k possible successive substrings will occur with

equal relative frequency 2�k. Taking into account the subadditivity

of bit string complexity (4.1) and the asymptotic lower bound on the

maximum complexity (8.1), we see that

�n � H(S) �
�
n

k

�0@X
jsj=k

H(s)=2k

1
A+ o(n):

Multiplying through by k, dividing through by n, and letting n go to

in�nity, we see that

�k �
X
jsj=k

H(s)=2k:

This piece of reasoning has a pleasant probabilistic
avor.

We can go a bit farther. The maximummaxjsj=nH(s) cannot be less
than the average

P
jsj=nH(s)=2n, which in turn cannot be less than �n.

Thus if we can �nd a single string of k bits with less than the maximum

possible complexity, it will follow that the maximum is greater than the

average, and thus also greater than �k. This is easy to do, for

H(

k 0'sz }| {
000 � � � 0) � O(log k) < �k

for large k. Thus we have shown that for all large k,

�k < max
jsj=k

H(s):

In fact we can do slightly better if we reconsider that long maximum

complexity n-bit string S. For any �xed k, we know that for n large

there must be a subsequence 0k of k consecutive 0's inside S. Let's call

everything before that subsequence of k 0's, S0, and everything after,

S00. Then by subadditivity, we have

�n < H(S) � H(S0) +H(0k) +H(S00) + c

� H(S0) +O(log k) +H(S00)

where

jS0j+ jS00j = n� k:

LISP Program-Size Complexity 51

It follows immediately that

max
jsj=n

H(s)

!
� �n

must be unbounded.

12. Conclusion

We see that the methods used in references [3{6] to deal with bounded-

transfer Turing machines apply neatly to LISP. It is a source of satis-

faction to the author that some ideas in one of his earliest papers, ideas

which seemed to apply only to a contrived version of a Turing machine,

also apply to the elegant programming language LISP.

It would be interesting to continue this analysis and go beyond the

methods of references [3{6]. The Appendix is an initial step in this

direction.

Appendix

There is an intimate connection between the rate of growth of

maxjsj=nH(s) and the number of �n-character S-expressions.
Why is this?

First of all, if the number of � n-character S-expressions is < 2k,

then clearly maxjsj=kH(s) > n, because there are simply not enough

S-expressions to go around.

On the other hand, we can use S-expressions as notations for bit

strings, by identifying the jth S-expression with the jth bit string.

Here we order all S-expressions and bit strings, �rst by size, and then

within those of the same size, lexicographically.

Using this notation, by the time we get to the 2k+1th S-expression,

we will have covered all�k-bit strings, because there are not that many

of them. Thus maxjsj=kH(s) � n + c if the number of � n-character
S-expressions is � 2k+1. Here c is the number of characters that must

be added to the jth S-expression to obtain an expression whose value

is the jth bit string.

52 Part I|Survey

So the key to further progress is to study how smoothly the number

of S-expressions of size n varies as a function of n; see Appendix B [1]

for an example of such an analysis.

One thing that limits the growth of the number of S-expressions

of size n, is \synonyms," di�erent strings of characters that denote

the same S-expression. For example, () and NIL denote the same

S-expression, and there is no di�erence between (A B), (A B) and

(A B). Surprisingly, the fact that parentheses have to balance does

not signi�cantly limit the multiplicative growth of possibilities, as is

shown in Appendix B [1].

References

1 G. J. Chaitin, Algorithmic Information Theory, Cambridge

University Press, 1987.

2 G. J. Chaitin, Information, Randomness & Incompleteness|

Papers on Algorithmic Information Theory, Second ed., World

Scienti�c, 1990.

3 G. J. Chaitin, On the length of programs for computing �nite

binary sequences by bounded-transfer Turing machines, Abstract

66T{26, AMS Notices 13:133 (1966).

4 G. J. Chaitin, On the length of programs for computing �-

nite binary sequences by bounded-transfer Turing machines II,

Abstract 631{6, AMS Notices 13:228{229 (1966).

5 G. J. Chaitin, On the length of programs for computing �nite

binary sequences, Journal of the ACM 13:547{569 (1966).

6 G. J. Chaitin, On the length of programs for computing �nite

binary sequences: statistical considerations, Journal of the ACM

16:145{159 (1969).

7 J. McCarthy et al., LISP 1.5 Programmer's Manual, MIT

Press, 1962.

LISP Program-Size Complexity 53

8 W. Feller, An Introduction to Probability Theory and Its Ap-

plications I, Wiley, 1964.

9 G. J. Chaitin, LISP for Algorithmic Information Theory in C,

1990.

10 G. J. Chaitin, LISP for Algorithmic Information Theory in

SETL2, 1991.

54 Part I|Survey

LISP PROGRAM-SIZE

COMPLEXITY II

Applied Mathematics and Computation

52 (1992), pp. 103{126

G. J. Chaitin

Abstract

We present the information-theoretic incompleteness theorems that

arise in a theory of program-size complexity based on something close

to real LISP. The complexity of a formal axiomatic system is de�ned

to be the minimum size in characters of a LISP de�nition of the proof-

checking function associated with the formal system. Using this con-

crete and easy to understand de�nition, we show (a) that it is di�cult

to exhibit complex S-expressions, and (b) that it is di�cult to deter-

mine the bits of the LISP halting probability
LISP. We also construct

improved versions
0
LISP and
00

LISP of the LISP halting probability that

asymptotically have maximum possible LISP complexity.

Copyright c
 1992, Elsevier Science Publishing Co., Inc., reprinted by permission.

55

56 Part I|Survey

1. Introduction

The main incompleteness theorems of myAlgorithmic Information The-

ory monograph [1] are reformulated and proved here using a concrete

and easy-to-understand de�nition of the complexity of a formal ax-

iomatic system based on something close to real LISP [2]. This paper

is the sequel to [3], and develops the incompleteness results associated

with the theory of LISP program-size complexity presented in [3]. Fur-

ther papers in this series shall study (1) a parenthesis-free version of

LISP, and (2) a character-string oriented version of LISP in which the

naturally occurring LISP halting probability asymptotically has maxi-

mum possible LISP complexity.

In [4] I present the latest versions of my information-theoretic in-

completeness theorems; there the complexity of a formal system is de-

�ned in terms of the program-size complexity of enumerating its in�nite

set of theorems. Here the goal has been to make these incompleteness

results accessible to the widest possible public, by formulating them as

concretely and in as straight-forward a manner as possible. Instead of

the abstract program-size complexity measure used in [4], here we look

at the size in characters of programs in what is essentially real LISP.

The price we pay is that our results are weaker (but much easier to

prove and understand) than those in [4].

This paper may also be contrasted with the chapter on LISP in my

monograph [1]. There I use a toy version of LISP in which identi�ers

(atoms) are only one character long. In future papers I shall present

two LISP dialects that allow multiple-character LISP atoms, but which

share some of the desirable features of the toy LISP in [1].

From a technical point of view, Sections 7 and 8 are of special in-

terest. There two arti�cial LISP halting probabilities
0
LISP and
00

LISP

are constructed that asymptotically have maximumpossible LISP com-

plexity.

At this point it is appropriate to recall Levin's delightful and un-

justly forgotten book [5] on LISP and metamathematics. (Levin was

one of the coauthors of the original LISP manual [2].)

Before proceeding, let's summarize the results of [3]. Consider an

n-bit string s. Its maximum possible LISP complexity is asymptotic to

LISP Program-Size Complexity II 57

a real constant � times n:

max
jsj=n

HLISP(s) � �n:

Furthermore, most n-bit strings s have close to this maximum possi-

ble LISP complexity; such bit strings are \random." For example, if

HLISP(sn) � �js
n
j, then as n!1 the ratio of the number of 0's to the

number of 1's in the bit string s
n
tends to the limit unity.

2. Minimal LISP Expressions

Motivation: Imagine a LISP programming class. Suppose the class

is given the following homework assignment: �nd a LISP S-expression

for the list of primes less than a thousand. The students might well

compete to �nd the cleverest solution, the smallest LISP S-expression

for this list of prime numbers. But one can never be sure that one

has found the best solution! As we shall see, here one is up against

fundamental limitations on the power of mathematical reasoning! It is

this easy to get in trouble!

Consider a minimal-size LISP S-expression p. I.e., p has the value

x and no S-expression smaller than p has the same value x. Also, let

q be a minimal-size S-expression for p. I.e., the value of q is p and no

expression smaller than q has p as value.

q
yields value�! p

yields value�! x:

Consider the following LISP expression:

(quote p)

This expression evaluates to p. This shows that

HLISP(p) � jpj+ 8:

Consider the following LISP expression:

(eval q)

58 Part I|Survey

This expression evaluates to x. This shows that

jpj = HLISP(x) � jqj+ 7 = HLISP(p) + 7:

Hence

HLISP(p) � jpj � 7:

In summary,

Theorem A: If p is a minimal expression, it follows that����HLISP(p)� jpj
���� � 8:

Hence the assertion that p is a minimal LISP S-expression is also

an assertion about p's LISP complexity. If one can prove that p is a

minimal LISP S-expression, one has also shown that HLISP(p) � jpj�7.
Anticipation: Where do we go from here? Minimal LISP S-

expressions illustrate perfectly the ideas explored in the next section,

Section 3.

The following result is a corollary of my fundamental theorem on

the di�culty of establishing lower bounds on complexity (Theorem C

in Section 3): A formal system with LISP complexity n can only enable

one to prove that a LISP S-expression p is minimal if p's size is < n+ c

characters. This is only possible for �nitely many p, because there are

only �nitely many expressions (minimal or not) of size < n+ c.
Conversely by Theorem D in Section 3, there are formal systems

that have LISP complexity < n + c0 in which one can determine each

minimal LISP expression p up to n characters in size. (Basically, the

axiom that one needs to know is either the LISP S-expression of size

� n that takes longest to halt, or the number of LISP S-expressions of

size � n that halt.)

The details and proofs of these assertions are in Section 3.

3. Exhibiting Complex S-Expressions

Recall the standard LISP convention of having a function return nil

to indicate \no value"; otherwise the return value is the real value

wrapped in a pair of parentheses.

LISP Program-Size Complexity II 59

We de�ne an n-character formal system to be an n-character self-

contained LISP function f that given a purported proof p returns

nil if the proof is invalid and that returns (t) where t is the theorem
proved if the proof is valid. I.e., f(p) is always de�ned and

f(p) =

(
nil if p is an invalid proof;

(t) if p is a valid proof.

Here is an example of a self-contained function de�nition:

(lambda

(real-argument-of-function)

((lambda

(main-function

auxiliary-function-1

auxiliary-function-2

auxiliary-function-3

)

(main-function real-argument-of-function)

)

(quote definition-of-main-function)

(quote definition-of-auxiliary-function-1)

(quote definition-of-auxiliary-function-2)

(quote definition-of-auxiliary-function-3)

)

)

We are interested in the theorems of the following form:

(is-greater-than

(lisp-complexity-of (quote x))

999999

)

This is the LISP notation for

HLISP(x) > 999999:

The following theoremworks because if we are given a LISP program

we can determine its size as well as run it.

60 Part I|Survey

Theorem B: An n-character formal system cannot prove that a

speci�c S-expression has LISP complexity > n+ c characters.

Proof: Suppose we are given a proof-checking algorithm q for a

formal system. This is a LISP function of one argument, the putative

proof. This function q must always return a value, either nil signifying
that the proof is incorrect, or a list (t) consisting of a single element

t, the theorem established by the proof. Given a quoted expression

(quote q) for the de�nition of this proof-checking function q, we can

do the following two things with it:

1. We can determine the size in characters s of the proof-checker

q by converting the S-expression q to a character string1 and

then counting the number of elements in the resulting list of

characters.2 The LISP for doing this is:

s = (length(character-string q))

2. We can use the proof-checker q to check purported proofs p by

forming the expression (q (quote p)) and then evaluating this

expression in a clean environment. The LISP for doing this is:

(eval (cons q

(cons (cons (quote quote)

(cons p

nil))

nil))

)

So we try the given s-character proof checker q on each possible proof

p until we �nd a valid proof p that

1The LISP interpreter has to be able to convert S-expressions into character
strings in order to print them out. So it might as well make the resulting character
strings available internally as well as externally, via a character-string built-in
function. Characters are integers in the range from 0 to �� 1, where � is the size
of the LISP alphabet, including the two parentheses and the blank.

2Determining the length of a character string, which is just a list of integers, is
easily programmed if it is not provided as a built-in function: (lambda (list)

((lambda (length) (length list)) (quote (lambda (list) (cond ((atom

list) 0) (t (plus 1 (length (cdr list))))))))).

LISP Program-Size Complexity II 61

(is-greater-than

(lisp-complexity-of (quote x))

n

)

where the numeral n is � s+ k. I.e., we are searching for a proof that

HLISP(x) > s+ k

for a speci�c S-expression x. Then we output the LISP S-expression x

and halt. The computation that we have just described in words can

be formulated as a LISP expression

((lambda(proof-checker lower-bound)...)

(quote(lambda(purported-proof)...)| {z }
s characters

) k|{z}
blog10 kc+ 1 digits

)

whose size is s+blog10 kc+c0 that evaluates to an S-expression x whose
LISP character complexity is > s+ k. Hence

s+ blog10 kc + c0 > s+ k:

This yields a contradiction for a �xed choice c of k that depends only

on c0 and not on the particular formal proof checker that we are given.

Q.E.D.

Above we consider an n-character proof-checker or formal system.

What if we consider instead a proof-checker whose LISP complexity is

n characters? In fact, a slight modi�cation of the above proof shows

that

Theorem C: A formal system with a LISP complexity of n char-

acters cannot prove that a speci�c S-expression has LISP complexity

> n+ c characters.

Proof: The only change is that the very big LISP expression con-

62 Part I|Survey

sidered above now becomes:

((lambda(proof-checker lower-bound)...)

(...)| {z }
minimal-size LISP expression that evaluates to the proof-checker lambda-expression

k|{z}
blog10 kc+ 1 digits

)

I.e., the proof-checker is no longer given as a quoted expression, but is

itself computed. Q.E.D.

This theorem is sharp; here is the converse.

Theorem D:There is a formal systemwith LISP complexity< n+c
that enables us to determine:

(a) which LISP S-expressions have LISP complexity � n,3 and

(b) the exact LISP complexity of each LISP S-expression with LISP

complexity < n.4

Proof: Here are two axioms packed full of information from which

we can deduce the desired theorems:

1. Being given the � n character LISP S-expression that halts and

takes longest to do so (padded to size n).

2. Being given the kth � n character LISP S-expression.5 Here k

is the number of � n character LISP S-expressions that halt.

(Here again, this S-expression must be padded to a �xed size of

n characters.)

Here is how to do the padding:

(quote((...)xxxxxx))

3There are in�nitely many S-expressions with this property.
4There are only �nitely many S-expressions with this property.
5Pick a �xed ordering of all S-expressions, �rst by size, then alphabetically among

S-expressions of the same size.

LISP Program-Size Complexity II 63

The three dots are where the S-expression to be padded is inserted.

The x's are the padding. This scheme pads an S-expression e that is

� n characters long into one ((e)xxxxxx) that is exactly n + 4 char-

acters long. (The 4 is the number of added parentheses that glue the

expression e to its padding xxxxxx.) To retrieve the original expression
one takes the CAR of the CAR, i.e., the �rst element of the �rst element.

To determine n, one converts the padded S-expression into the corre-

sponding character string, one counts the number of characters in it,

and one subtracts 4. Q.E.D.

4. The Halting Probability
LISP

The �rst step in constructing an expression for a halting probability

for real LISP, is to throw out all atomic S-expressions, S-expressions

like harold, big-atom, etc. Anyway, most atomic S-expressions fail

to halt in the sense that they fail to have a value. (Of course, this

is when they are considered as self-contained S-expressions, not when

they are encountered while evaluating a much larger S-expression with

lambda-expressions and bindings.) The usual exceptions are the logical

constants t and nil, which evaluate to themselves.6 At any rate,

the purpose of a halting probability is to help us to decide which S-

expressions halt, i.e., have a value. But we don't need any help to

decide if an atomic S-expression has a value; this is trivial to do. So

let's forget about atomic S-expressions for the moment.

Let's look at all non-atomic S-expressions e, in other words, at S-

expressions of the form (...). None of these is an extension of another,

because the ()'s must balance and therefore enable us to decide where

a non-atomic S-expression �nishes. In other words, non-atomic LISP S-

expressions have the vital property that they are what is referred to as

\self-delimiting." In a moment we shall show that this self-delimiting

property enables us to de�ne a LISP halting probability as follows:

6In the LISP dialect in [1], an unbound atom will evaluate to itself, i.e., act as
if it were a constant.

64 Part I|Survey

LISP

=
X

S-expression e

\halts,"

is de�ned,

has a value.

��[size in characters of S-expression e]

=
X

(x) has a value.

��j(x)j:

Here � is the number of characters in the LISP alphabet and is assumed

to be a power of two. The S-expressions e included in the above sum

must not be atomic, and they must all be di�erent. If two expres-

sions e and e0 di�er only in that one contains redundant blanks, then

only the one without the redundant blanks is included in the above

sum. Similarly, (()) and (nil) are equivalent S-expressions, and are

only included once in the sum for
LISP. This is a straight-forward

de�nition of a LISP halting probability; we shall see in Sections 7 and

8 that it can be improved.

LISP is also considered to be an in�nite bit string, the base-two

representation of
LISP. It is important to pick the base-two represen-

tation with an in�nite number of 1s. I.e., if it should end with

100000: : : , pick 011111: : : instead.7

It is crucial that the sum for
LISP converges; in fact we have

0 <
LISP < 1:

Why is this? The basic reason is that non-atomic LISP S-expressions

are self-delimiting because their parentheses must balance. Thus no ex-

tension of a non-atomic S-expression is a valid non-atomic S-expression.

Extra blanks at the end of an S-expression e are not allowed in the sum
for
LISP!

Here is a geometrical proof that this works. Associate S-expressions

with subsets of the interval of unit length consisting of all real numbers

r between zero and one. The S-expression e is associated with all those

7We shall see that
LISP is highly uncomputable and therefore irrational, so this
can't actually occur, but we don't know that yet!

LISP Program-Size Complexity II 65

real numbers r having that string at the beginning of the fractional

part of r's base-� representation:

e
is associated with ! f the set of all reals of the form :e � � � in radix � notationg:

Then the length of the interval associated with an S-expression e is

precisely its probability ��jej. That no extension of a non-atomic S-

expression is a valid non-atomic S-expression means that the intervals

associated with non-atomic S-expressions do not overlap. Hence the

sum of the lengths of these non-overlapping intervals must be less than

unity, since they are all inside an interval of unit length. In other words,

the total probability that a string of characters picked at random from

an alphabet with � characters is a non-atomic S-expression is less than

unity, and from these we select those that halt, i.e., evaluate to a value.

Another crucial property of
LISP (and of the two halting proba-

bilities
0
LISP and
00

LISP that we will construct in Sections 7 and 8) is

that it can be calculated in the limit from below. More precisely,
LISP

can be obtained as the limit from below of a computable monotone

increasing sequence8 of dyadic rational numbers9

l
:

0 �
1 �
2 � � � � �

l�1 �

l
!
LISP:

This is the case because the set of all S-expressions that halt, i.e., that

have a LISP value, is recursively enumerable. In other words, we can

eventually discover all S-expressions that halt.

Assume one is given the �rst n log2 � bits of
LISP. One then starts

to enumerate the set of all S-expressions that halt. As soon as one

discovers enough of them to account for the �rst n log2 � bits of
LISP,

one knows that one has all � n character non-atomic S-expressions

that halt. And there is a trivial algorithm for deciding which � n
character atomic S-expressions halt. One then calculates the set of

all the values of � n character S-expressions that halt, and picks an

arbitrary S-expression that is not in this set of values. The result is an

S-expression with LISP complexity > n. Hence the string of the �rst

n log2 � bits of
LISP must itself have LISP complexity > n � c.
8I.e., nondecreasing sequence.
9I.e., rationals of the form i=2j .

66 Part I|Survey

For more details about the process for using a halting probability

to solve the halting problem, see the chapter \Chaitin's Omega" in

Gardner [6], or see [1].

In summary, if one knows the �rst n log2 � bits of
LISP, one can

determine each LISP S-expression with LISP complexity � n charac-

ters, and can then produce a LISP S-expression with LISP complexity

> n characters. Thus

Theorem E: The string consisting of the �rst n log2 � bits of
LISP

has LISP complexity > n� c characters.
Using our standard technique for showing that it is di�cult to ex-

hibit complex S-expressions (Section 3), it follows immediately that

Theorem F: To be able to prove what are the values of the �rst

n log2 � bits of
LISP requires a formal system with LISP complexity

> n� c characters.
Proof: Suppose we are given a proof-checking algorithm for a for-

mal system. This is a LISP function of one argument, the putative

proof. This function must always return a value, either nil signifying

that the proof is incorrect, or a list (t) consisting of a single element

t, the theorem established by the proof. Given a quoted expression

for the de�nition of this proof-checking function, we both know its

size in characters s, and we can use it to check purported proofs. So

we try it on each possible proof until we �nd a proof that \The �rst

(s+ k) log2 � bits of
LISP are : : : " This would give us a LISP expres-

sion with s+ blog10 kc+ c0 characters that evaluates to something with

LISP complexity > s + k � c00 characters. This yields a contradiction

for a �xed choice of k that depends only on c0 and c00 and not on the

particular formal proof checker that we are given. Q.E.D.

5. Diophantine Equations for
LISP

Now let's convert this incompleteness theorem (Theorem F) into one

about diophantine equations.

We arithmetize
LISP in two diophantine equations: one polynomial

[7], the other exponential [8]. As we pointed out in Section 4,
LISP

can be obtained as the limit from below of a computable monotone

LISP Program-Size Complexity II 67

increasing sequence of dyadic rational numbers

l
:

0 �
1 �
2 � � � � �

l�1 �

l
!
LISP:

The methods of Jones and Matijasevi�c [7, 8, 26] enable one to con-

struct the following:

D1: A diophantine equation

P (k; l; x1; x2; x3; : : :) = 0

that has one or more solutions if the kth bit of

l
is a 1, and that

has no solutions if the kth bit of

l
is a 0.

D2: An exponential diophantine equation

L(k; l; x2; x3; : : :) = R(k; l; x2; x3; : : :)

that has exactly one solution if the kth bit of

l
is a 1, and that

has no solutions if the kth bit of

l
is a 0.

Since in the limit of large l the kth bit of

l
becomes and remains

correct, i.e., identical to the kth bit of
LISP, it follows immediately

that:

P1: There are in�nitely many values of l for which the diophantine

equation

P (k; l; x1; x2; x3; : : :) = 0

has a solution i� the kth bit of
LISP is a 1.

P2: The exponential diophantine equation

L(k; x1; x2; x3; : : :) = R(k; x1; x2; x3; : : :)

has in�nitely many solutions i� the kth bit of
LISP is a 1.

Consider the following questions:

Q1: For a given value of k, are there in�nitely many values of l for
which the diophantine equation

P (k; l; x1; x2; x3; : : :) = 0

has a solution?

68 Part I|Survey

Q2: For a given value of k, does the exponential diophantine equation

L(k; x1; x2; x3; : : :) = R(k; x1; x2; x3; : : :)

have in�nitely many solutions?

As we have seen in TheoremF, to answer the �rst n log2 � of either of

these questions requires a formal system with LISP complexity > n� c
characters.

In a more abstract setting [4], with diophantine equations con-

structed from a di�erent halting probability, we can do a lot better.

There answering any n of these questions requires a formal system

whose set of theorems has enumeration complexity > n� c bits.
In Sections 7 and 8 we construct more arti�cial versions of
LISP,

0
LISP and
00

LISP, for which we can show that the LISP complexity of

the �rst n bits is asymptotically the maximum possible, �n characters.

By using the method presented in this section, we will automatically

get from
0
LISP and
00

LISP new versions of the diophantine equations D1

and D2, new versions of the questions Q1 and Q2, and new versions

of the corresponding incompleteness theorems. But before diving into

these more technical matters, it is a good idea to step back and take a

look at what has been accomplished so far.

6. Discussion

The spirit of the results in Section 3 (Theorems B and C) is often

expressed as follows:

\A set of axioms of complexity N cannot yield a theorem

of complexity [substantially] greater than N ."

This way of describing the situation originated in the introductory dis-

cussion of my paper [9]:

\The approach of this paper: : : is to measure the power of a

set of axioms, to measure the information that it contains.

We shall see that there are circumstances in which one only

gets out of a set of axioms what one puts in, and in which

LISP Program-Size Complexity II 69

it is possible to reason in the following manner. If a set

of theorems constitutes t bits of information, and a set of

axioms contains less than t bits of information, then it is

impossible to deduce these theorems from these axioms."

This heuristic principle is basically correct, about as correct as any

informal explanation of a technical mathematical result can be. But it

is useful to point out its limitations.

In fact, any set of axioms that yields an in�nite set of theorems

must yield theorems with arbitrarily high complexity! This is true for

the trivial reason that there are only �nitely many objects of any given

complexity. And it is easy to give natural examples. For example,

consider the trivial theorems of the form

\N + 1 = 1 +N"

in which the numeral N is, if converted to base-two, a large random

bit string, i.e., one with LISP complexity � � log2N . (This will be the

case for most large integers N .) This theorem has, if considered as a

character string, essentially the same arbitrarily large complexity that

the number N has.

So what is to become of our heuristic principle that

\A set of axioms of complexity N cannot yield a theorem

of complexity substantially greater than N" ???

An improved version of this heuristic principle, which is not really any

less powerful than the original one, is this:

\One cannot prove a theorem from a set of axioms that is

of greater complexity than the axioms and know that one

has done this. I.e., one cannot realize that a theorem is

of substantially greater complexity than the axioms from

which it has been deduced, if this should happen to be the

case."

Thus even though most large integers N are random bit strings in base-

two and yield arbitrarily complex theorems of the form

\N + 1 = 1 +N",

70 Part I|Survey

we can never tell which N are random and achieve this!

Note that in Section 4 we encountered no di�culty in using our

heuristic principle to restrict the ability of formal systems to prove

what the value of
LISP is; our general method applies quite naturally in

this particular case (Theorem F). This example of the application of our

heuristic principle shows that the power of this principle is not restricted

by the fact that it really only prevents us from proving theorems that

are more complex than our axioms if we can realize that the theorems

would be more complex than our axioms are.

Perhaps it is better to avoid all these problems and discussions by

rephrasing our fundamental principle in the following totally unobjec-

tionable form:

\A set of axioms of complexity N cannot yield a theorem

that asserts that a speci�c object is of complexity substan-

tially greater than N ."

It was removing the words \asserts that a speci�c object" that yielded

the slightly overly-simpli�ed version of the principle that we discussed

above:

\A set of axioms of complexity N cannot yield a theorem

that [asserts that a speci�c object] is of complexity substan-

tially greater than N ."

7. A Second \Halting Probability"
0LISP

We shall now \normalize"
LISP and make its information content

\more dense." The new halting probability
0
LISP in this section has a

simple de�nition, but the proof that it works is delicate. The halting

probability in Section 8,
00
LISP, has a more complicated de�nition, but

it is much easier to see that it works.

Let's pick a total recursive function f such that
P
2�f(n) � 1 and

f(n) = O(log n). For example, let f(n) = 2dlog2 ne + 1. This works,

because

1X
n=1

2�2dlog2 ne�1 � 1

2

1X
n=1

2�2 log2 n =
1

2

1X
n=1

1

n2
=
�2=6

2
� 1:644934

2
< 1:

LISP Program-Size Complexity II 71

Here we have used the fact discovered by Euler10 that 1+1=4+1=9+

1=16 + 1=25 + � � � = �2=6.

De�ne a new LISP \halting probability" between zero and one as

follows:

0
LISP =

1X
n=1

�
of di�erent � n character LISP S-expressions that halt

2dlog2(total # of di�erent � n character LISP S-expressions)e

�
2�2dlog2 ne�1:

The factor of 2�2dlog2 ne�1 is in order to insure convergence. The de-

nominator of (total # of di�erent � n character LISP S-expressions),

or S
n
, is increased to the next highest power of two, 2dlog2 Sne, so that

we are doing very straightforward binary arithmetic to calculate
0
LISP.

Why is the LISP complexity of the string of the �rst n bits of
0
LISP

asymptotic to the maximum possible, �n?
The main reason is this: Consider all n-bit strings s. From [3] we

know that

max
jsj=n

HLISP(s) � �n:

And below we shall show that it is also the case that

n � log2(# of di�erent � �n character LISP S-expressions):

(This is somewhat delicate.)

So just about when the expression for the denominator in
0
LISP,

\2dlog2(total # of di�erent � �n character LISP S-expressions)e,"

hits 2n, the numerator,

\# of di�erent � �n character LISP S-expressions that halt,"

will include all minimal LISP expressions for n-bit strings. Thus

knowing a string consisting of the �rst n + o(n) bits of
0
LISP tells

us the LISP complexity of each � n bit string. Hence the LISP

10For Euler's proof that 1+1=4+1=9+1=16+ 1=25+ � � � = �
2
=6, see Section 6

in Chapter II of the �rst volume of Polya [10]. (Also see the exercises at the end
of Chapter II.)

72 Part I|Survey

complexity of the string of the �rst n bits of
0
LISP is asymptotic to

maxjsj=nHLISP(s) � �n.
It remains for us to establish the asymptotic expression for the

logarithm of S
n
, the total number of di�erent � n character LISP

S-expressions. Let S0
n
be the number of di�erent non-atomic � n

character LISP S-expressions. Consider an S-expression that is a list of

n elements, each of which is a � k character non-atomic S-expression.

This shows that we have

S0
nk+2 � (S0

k
)n:

(The 2 is for the two enclosing parentheses that must be added.) Hence

log2 S
0
nk+2 � n log2 S

0
k
:

Dividing through by nk we see that

log2 S
0
nk+2

nk
� log2 S

0
k

k
:

From this it is easy to see that

lim inf
n!1

log2 S
0
n

n
� log2 S

0
k

k
:

On the other hand, the total number S
n
of di�erent � n character

LISP S-expressions satis�es:

n log2 � � log2 Sn > log2 S
0
n
:

Thus (log2 S
0
n
)=n tends to the limit
 � log2 � from below, where

 = sup
n!1

log2 S
0
n

n
� log2 �:

Furthermore,
 6= 0. This can be seen by considering those S-

expressions that are a list (999: : :999) containing a single \bignum" or

large integer. (For such S-expressions to be di�erent, the �rst digit must

not be 0.) This shows that 9 � 10n � S0
n+3, and thus
 � log2 10 > 0.

So the limit
 of (log2 S
0
n
)=n is not equal to zero, and thus log2 S

0
n
is

asymptotic to
n:
log2 S

0
n
�
n:

LISP Program-Size Complexity II 73

Consider an S-expression that is a list (: : :) with one element, which

may be an atom. This shows that S
n
� S0

n+2. On the other hand,

S 0
n
� S

n
, because each S-expression included in S0

n
is also included in

S
n
. Thus we see that

S 0
n
� S

n
� S0

n+2:

Since log2 S
0
n
is asymptotic to
n, it follows from this inequality that

log2 Sn is also asymptotic to
n.

So we have shown that

n � log2(# of di�erent � n character LISP S-expressions)

and therefore

n � log2(# of di�erent � n=
 character LISP S-expressions):

We �nish by showing that � = 1=
 by using reasoning from the

Appendix of [3]. Order the LISP S-expressions, �rst by their size in

characters, and among those of the same size, in an arbitrary alpha-

betical order.

To get all n-bit strings, one needs to evaluate at least 2n dif-

ferent LISP S-expressions. Thus if S
m
< 2n, then there is an n-

bit string s with LISP complexity greater than m. It follows that

maxjsj=nHLISP(s) > n=
 + o(n).

On the other hand, we can use the kth S-expression as a notation to

represent the kth bit string. This gives us all n-bit strings by the time

k reaches 2n+1. And we have to add c characters to indicate how to

convert the kth S-expression into the kth bit string. Thus if S
m
� 2n+1,

then all n-bit strings s have LISP complexity less than m+c. It follows

that maxjsj=nHLISP(s) < n=
 + o(n).
So

max
jsj=n

HLISP(s) � n=
 � �n;

and � = 1=
. That concludes the proof of the following theorem.

Theorem G: The LISP complexity of the string consisting of the

�rst n bits of
0
LISP is � �n. In order to answer the �rst n questions Q1

or Q2 for diophantine equations D1 and D2 constructed from
0
LISP as

indicated in Section 5, one needs a formal sytem with LISP complexity

> �n+ o(n).

74 Part I|Survey

8. A Third \Halting Probability"
00LISP

This time the de�nition of the \halting probability" is more arti�cial,

but it is much easier to see that the de�nition does what we want it to

do.

As in Section 7, we use the fact that

1X
i=1

2�2dlog2 ie�1 � 1

2

1X
i=1

2�2 log2 i =
1

2

1X
i=1

1

i2
=
�2

12
< 1:

Multiplying together two copies of this in�nite series, we see that

1X
i=1

1X
j=1

2�2dlog2 ie�2dlog2 je�2 < 12 = 1:

De�ne a new LISP \halting probability" as follows:

00
LISP =

1X
i=1

1X
j=1

�
ij
2�2dlog2 ie�2dlog2 je�2:

Here the dyadic rationals �
ij
, for which it is always the case that

0 � �
ij
� 1;

are de�ned as follows:

�
ij
=

of j-bit strings that have LISP complexity � i

of j-bit strings

!
� 2j=2j :

It follows immediately that

0 �
00
LISP � 1:

A string consisting of the �rst n + O(log n) bits of
00
LISP tells us the

LISP complexity of each � n bit string; the most complex have LISP

complexity � �n. So
Theorem H: The LISP complexity of the string consisting of the

�rst n bits of
00
LISP is � �n. In order to answer the �rst n questions Q1

or Q2 for diophantine equations D1 and D2 constructed from
00
LISP as

indicated in Section 5, one needs a formal sytem with LISP complexity

> �n+ o(n).

LISP Program-Size Complexity II 75

9. Unpredictability

From the fact that the initial segments of the in�nite bit strings
0
LISP

and
00
LISP asymptotically have maximum possible LISP complexity, it

follows that their successive bits cannot be predicted using any com-

putable prediction scheme. More precisely,

Theorem I: Consider a total recursive prediction function F , which

given an arbitrary �nite initial segment of an in�nite bit string, returns

either \no prediction", \the next bit is a 0", or \the next bit is a 1".

Then if F predicts at least a �xed nonzero fraction of the bits of
0
LISP

and
00
LISP, F does no better than chance, because in the limit the

relative frequency of correct and incorrect predictions both tend to 1
2
.

Proof Sketch: We know that
0
LISP and
00

LISP both have the prop-

erty that the string

n
of the �rst n bits of each has LISP complexity

asymptotic to the maximum possible, which is �n.
The idea is to separate the n-bit string

n
consisting of the �rst n

bits of either
0
LISP or
00

LISP into the substring that is not predicted,

which we will leave \as is," and the substring that is predicted, which

we will attempt to compress.

Let k be the number of bits of

n
that are predicted by F . The

(n�k)-bit unpredicted substring of

n
we are given \as is." This takes

� �(n� k) LISP characters.

The k-bit predicted substring of

n
is not given directly. Instead,

we calculate the predictions made by F , and are given a k-bit string
telling us which predictions are correct. Let l be the number of bits

that F predicts correctly. Thus this k-bit string will have l 1 bits,

indicating \correct," and (k � l) 0 bits, indicating \incorrect." If l
is not about one-half of k, the string of successes and failures of the

prediction scheme will be compressible, from the maximum possible of

� �k LISP characters, to only about �kH(l
k

; 1 � l

k

) LISP characters.

Here H(p; q) = �p log2 p � q log2 q is the Boltzmann-Shannon entropy

function. H(p; q) is less than one if p and q are not both equal to a

half. (For more details, see [3, Section 10].)

In summary, we use the prediction function F to stitch together the

unpredicted substring of

n
with the predictions. And we are given a

compressed string indicating when the predictions are incorrect.

So we have compressed the n-bit string

n
into two LISP expressions

76 Part I|Survey

of size totaling about

�(n� k) + �kH(l
k

; 1� l

k

)� �(n� k) + �k = �n:

This is substantially less than �n characters, which is impossible, unless

l � k=2. Thus about half the predictions are correct. Q.E.D.

Consider an F that always predicts that the next bit of
0
LISP is a 1.

Applying Theorem I, we see that
0
LISP has the property that 0's and

1's both have limiting relative frequency 1
2
. Next consider an F that

predicts that each 0 bit in
0
LISP is followed by a 1 bit. In the limit this

prediction will be right half the time and wrong half the time. Thus 0

bits are followed by 0 bits half the time, and by 1 bits half the time. It

follows by induction that each of the 2k possible blocks of k bits in
0
LISP

has limiting relative frequency 2�k. Thus, to use Borel's terminology,

0
LISP is \normal" in base two; so is
00

LISP. In fact,
0
LISP and
00

LISP are

Borel normal in every base, not just base two; we omit the details.

10. Hilbert's 10th Problem

I would now like to discuss Hilbert's tenth problem in the light of the

theory of LISP program-size complexity. I will end with a few contro-

versial remarks about the potential signi�cance of these information-

theoretic metamathematical results, and their connection with experi-

mental mathematics and the quasi-empirical school of thought regard-

ing the foundations of mathematics.

Consider a diophantine equation

P (k; x1; x2; : : :) = 0

with parameter k. Ask the question, \Does P (k) = 0 have a solution?"

Let

q = q0q1q2 � � �
be the in�nite bit string whose kth bit q

k
is a 0 if P (k) = 0 has no

solution, and is a 1 if P (k) = 0 has a solution:

q
k
=

(
0 if P (k) = 0 has no solution,

1 if P (k) = 0 has a solution.

LISP Program-Size Complexity II 77

Let

qn = q0q1 � � � qn�1
be the string of the �rst n bits of the in�nite string q, i.e., the string of
answers to the �rst n questions. Consider the LISP complexity of qn,

HLISP(q
n), the size in characters of the smallest LISP expression whose

value is qn.

If Hilbert had been right and every mathematical question had

a solution, then there would be a �nite set of axioms from which one

could deduce whether P (k) = 0 has a solution or not for each k. We

would then have

HLISP(q
n) � HLISP(n) + c:

The c characters are the �nite amount of LISP complexity in our ax-

ioms, and this inequality asserts that if one is given n, using the axioms

one can compute qn, i.e., decide which among the �rst n cases of the

diophantine equation have solutions and which don't. Thus we would

have

HLISP(q
n) � blog10 nc+ 1 + c = O(log n):

(blog10 nc + 1 is the number of digits in the base-ten numeral for n.)
I.e., the LISP complexity HLISP(q

n) of answering the �rst n questions

would be at most order of log n characters. We ignore the immense

amount of time it might take to deduce the answers from the axioms;

we are concentrating instead on the size in characters of the LISP

expressions that are involved.

In 1970 Matijasevi�c (see [7]) showed that there is no algorithm

for deciding if a diophantine equation can be solved. However, if we

are told the number m of equations P (k) = 0 with k < n that have a

solution, then we can eventually determine which do and which don't.

This shows that

HLISP(q
n) � HLISP(n) +HLISP(m) + c0

for some m � n, which implies that

HLISP(q
n) � 2(blog10 nc + 1) + c0 = O(log n):

I.e., the LISP complexity HLISP(q
n) of answering the �rst n questions

is still at most order of log n characters. So from the point of view

78 Part I|Survey

of the LISP theory of program size, Hilbert's tenth problem, while

undecidable, does not look too di�cult.

Using the method we presented in Section 5, one can use the \im-

proved" LISP halting probability
0
LISP or
00

LISP of Sections 7 and 8 to

construct an exponential diophantine equation

L(k; x1; x2; : : :) = R(k; x1; x2; : : :)

with a parameter k. This equation yields randomness and unpre-

dictability as follows. Ask the question, \Does L(k) = R(k) have

in�nitely many solutions?" Now let

q = q0q1q2 � � �

be the in�nite bit string whose kth bit q
k
is a 0 if L(k) = R(k) has

�nitely many solutions, and is a 1 if L(k) = R(k) has in�nitely many

solutions:

q
k
=

(
0 if L(k) = R(k) has �nitely many solutions,

1 if L(k) = R(k) has in�nitely many solutions.

As before, let

qn = q0q1 � � � qn�1
be the string of the �rst n bits of the in�nite string q, i.e., the string of
answers to the �rst n questions. Consider the LISP complexity of qn,
HLISP(q

n), the size in characters of the smallest LISP expression whose

value is qn. Now we have

HLISP(q
n) � �n;

i.e., the string of answers to the �rst n questions qn has a LISP com-

plexity that is asymptotic to the maximum possible for an n-bit string.

As we discussed in Section 9, it follows that the string of answers

q = q0q1q2 � � � is now algorithmically random, in the sense that any

computable prediction scheme that predicts at least a �xed nonzero

fraction of the bits of qn will do no better than chance.11

11In the limit exactly half the predictions will be correct and half the predictions
will be incorrect.

LISP Program-Size Complexity II 79

Surprisingly, Hilbert was wrong to assume that every mathemat-

ical question has a solution. The above exponential diophantine equa-

tion yields an in�nite series of mathematical facts having maximum

possible LISP complexity, asymptotically � LISP characters per yes/no

fact. It yields an in�nite series of questions which reasoning is powerless

to answer because their in�nite LISP complexity exceeds the �nite LISP

complexity of any �nite set of mathematical axioms! Here one can get

out as theorems only as much LISP complexity as one explicitly puts in

as axioms, and reasoning is completely useless! I think this approach to

incompleteness via program-size complexity makes incompleteness look

much more natural and pervasive than has previously been the case.

This new approach also provides some theoretical justi�cation for the

experimental mathematics made possible by the computer, and for the

new quasi-empirical view of the philosophy of mathematics that is dis-

placing the traditional formalist, logicist, and intuitionist positions.

For other discussions of the signi�cance of these information-

theoretic incompleteness theorems, see [11{25].

References

[1] G. J. Chaitin, Algorithmic Information Theory, 3rd Printing,

Cambridge: Cambridge University Press (1990).

[2] J. McCarthy et al., LISP 1.5 Programmer's Manual, Cam-

bridge MA: MIT Press (1962).

[3] G. J. Chaitin, \LISP program-size complexity," Applied Math-

ematics and Computation 49 (1992), 79{93.

[4] G. J. Chaitin, \Information-theoretic incompleteness," Applied

Mathematics and Computation, in press.

[5] M. Levin, Mathematical Logic for Computer Scientists, Report

TR{131, Cambridge MA: MIT Project MAC (1974).

[6] M. Gardner, Fractal Music, Hypercards and More: : : , New

York: Freeman (1992).

80 Part I|Survey

[7] J. P. Jones and Y. V. Matijasevi�c, \Proof of the recursive

unsolvability of Hilbert's tenth problem," American Mathematical

Monthly 98 (1991), 689{709.

[8] J. P. Jones and Y. V. Matijasevi�c, \Register machine proof

of the theorem on exponential diophantine representation of enu-

merable sets," Journal of Symbolic Logic 49 (1984), 818{829.

[9] G. J. Chaitin, \Information-theoretic limitations of formal sys-

tems," Journal of the ACM 21 (1974), 403{424.

[10] G. Polya, Mathematics and Plausible Reasoning, Princeton:

Princeton University Press (1990).

[11] G. J. Chaitin, \Randomness and mathematical proof," Scien-

ti�c American 232:5 (1975), 47{52.

[12] G. J. Chaitin, \G�odel's theorem and information," Interna-

tional Journal of Theoretical Physics 22 (1982), 941{954.

[13] G. J. Chaitin, \Randomness in arithmetic," Scienti�c Ameri-

can 259:1 (1988), 80{85.

[14] G. J. Chaitin, \Undecidability and randomness in pure math-

ematics," (transcript of a lecture delivered 28 September 1989 at

a Solvay conference in Brussels). In: G. J. Chaitin, Infor-

mation, Randomness & Incompleteness|Papers on Algorithmic

Information Theory, 2nd Edition, Singapore: World Scienti�c

(1990), 307{313.

[15] G. J. Chaitin, \A random walk in arithmetic," New Scientist

125:1709 (1990), 44{46. Reprinted in: N. Hall, The New Scien-

tist Guide to Chaos, Harmondsworth: Penguin (1991), 196{202.

[16] J. L. Casti, Searching for Certainty, New York: Morrow (1990).

[17] G. J. Chaitin, \Number and randomness," (transcript of a lec-

ture delivered 15 January 1991 at the Technical University of

Vienna). In: M. E. Carvallo, Nature, Cognition and System,

Vol. 3, Dordrecht: Kluwer (1992), in press.

LISP Program-Size Complexity II 81

[18] G. J. Chaitin, \Le hasard des nombres," La Recherche 22

(1991), 610{615.

[19] D. Ruelle, Chance and Chaos, Princeton: Princeton University

Press (1991).

[20] D. Ruelle, Hasard et Chaos, Paris: Odile Jacob (1991).

[21] L. Brisson and F. W. Meyerstein, Inventer L'Univers, Paris:

Les Belles Lettres (1991).

[22] J. A. Paulos, Beyond Numeracy, New York: Knopf (1991).

[23] J. D. Barrow, Theories of Everything, Oxford: Clarendon

Press (1991).

[24] T. N�rretranders, M�rk Verden, Denmark: Gyldendal

(1991).

[25] P. Davies, The Mind of God, New York: Simon & Schuster

(1992).

[26] C. Smory�nski, Logical Number Theory I, Berlin: Springer-

Verlag (1991).

82 Part I|Survey

LISP PROGRAM-SIZE

COMPLEXITY III

Applied Mathematics and Computation

52 (1992), pp. 127{139

G. J. Chaitin

Abstract

We present a \parenthesis-free" dialect of LISP, in which (a) each prim-

itive function has a �xed number of arguments, and (b) the parentheses

associating a primitive function with its arguments are implicit and are

omitted. The parenthesis-free complexity of an S-expression e is de�ned
to be the minimum size in characters jpj of a parenthesis-free LISP ex-

pression p that has the value e. We develop a theory of program-size

complexity for parenthesis-free LISP by showing (a) that the maximum

possible parenthesis-free complexity of an n-bit string is � �n, and (b)

how to construct three parenthesis-free LISP halting probabilities
pf,

0
pf and
00

pf .

Copyright c
 1992, Elsevier Science Publishing Co., Inc., reprinted by permission.

83

84 Part I|Survey

1. Introduction

In this paper we consider a dialect of LISP half-way between the LISP

considered in my paper [1] (which is essentially normal LISP [2]) and

that studied in mymonograph [3]. The \parenthesis-free" LISP studied

in this paper employs multiple-character atoms as in [1], but omits the

parentheses associating each primitive function with its arguments as

in [3]. Subadditivity arguments as in [1] rather than precise counts of

S-expressions as in [3], are used to show that the maximum possible

parenthesis-free LISP complexity Hpf of an n-bit string is � �n. A

particularly natural de�nition of a parenthesis-free LISP halting prob-

ability
pf is presented here. Also two other halting probabilities,
0
pf

and
00
pf, that asymptotically achieve maximum possible parenthesis-

free LISP complexity �n of the n-bit initial segments of their base-two

expansions. We thus show that the entire theory developed in [1, 4] for

HLISP can be reformulated in terms of Hpf .

In the last section we make our parenthesis-free LISP substantially

easier to use.1

2. Pr�ecis of Parenthesis-Free LISP

Let's start with an example! Here is a sample specimen of parenthesis-

free LISP. It is a self-contained LISP expression that de�nes a function

append for concatenating two lists and then applies this function to the

lists (a b c) and (d e f).

Old notation [2]: see Figure 1. This expression evaluates to (a b c

d e f). New notation: see Figure 2. This expression, which is what

we shall call a meta-expression or M-expression, is expanded as it is

read by the parenthesis-free LISP interpreter into the corresponding S-

expression, which has all the parentheses: see Figure 3. This expression

also evaluates to (a b c d e f).

In parenthesis-free LISP, each LISP primitive function must have a

�xed number of arguments. So we have to �x cond, define, plus,

1Two decades ago the author wrote an interpreter for a similar LISP dialect. At
that time he did not realize that a mathematical theory of program size could be
developed for it.

LISP Program-Size Complexity III 85

(

(lambda (append)

(append (quote (a b c)) (quote (d e f)))

)

(quote

(lambda (x y)

(cond ((atom x) y)

(t (cons (car x) (append (cdr x) y)))

)

)

)

)

Figure 1. Old Notation

(fnc (app) (app '(a b c) '(d e f))

'fnc (x y)

if at x y

jn hd x (app tl x y)

)

Figure 2. M-expression

((fnc (app) (app ('(a b c)) ('(d e f))))

('(fnc (x y)

(if (at x) y

(jn (hd x) (app (tl x) y)))))

)

Figure 3. S-expression

86 Part I|Survey

and times. We replace conditional expressions with an inde�nite num-

ber of arguments by if-then-else expressions with three arguments. And

define, plus, and times now always have two arguments. As long

as we're at it, we also shorten the names of the primitive functions. See

the table summarizing parenthesis-free LISP on page 87.

Functions dealing with integers are the same as in C. mexp con-

verts an S-expression into the list of characters in the smallest possible

equivalent M-expression.2 This will be a list of integers in the range

from 0 to � � 1 (� = the size of the alphabet). sexp converts the list

of characters in an M-expression into the corresponding S-expression.3

$ indicates that there are no implicit parentheses in the immediately

following S-expression. ($ also loses any special meaning within the

range of a $.) Thus

'$(hd tl jn $)

evaluates to (hd tl jn $). Another detail: ' and $ do not need a

blank before the next character, i.e., no other atoms can start with the

characters ' or $.

For this parenthesis-free approach to work, it is important that

(a) Every S-expression can be written in this notation.

(b) It should be possible given a parenthesis-free LISP S-expression to

calculate the equivalent M-expression4 of smallest size. Here is
an example of the synonym problem: '$(eq x at y) and '($eq

x $at y) are the same.

(c) And one must be able to calculate the size in characters of the

M-expression that corresponds to a given S-expression as in (b).

3. Parenthesis-Free LISP Complexity

Previously we had two LISP theories of program-size complexity: one

for real LISP [1, 4], and one for a toy LISP [3]. In this section we

2This is the inverse of what the LISP interpreter's read routine does.
3This is an internally available version of the read routine used by the LISP

interpreter.
4This is the inverse of the input parse that puts in the implicit parentheses.

LISP Program-Size Complexity III 87

Old New Read Number of

Name Name As Arguments

car hd head 1

cdr tl tail 1

cons jn join 2

atom at atom predicate 1

eq eq equal predicate 2

quote ' quote 1

lambda fnc function 2

(cond (p x) (t y)) if p x y if-then-else 3

$ no implicit ()'s 1

de�ne def de�ne 2

eval val value-of 1

valt time-limited eval 1

sexp m-expr to s-expr 1

mexp s-expr to m-expr 1

numberp # number predicate 1

plus + plus 2

di�erence � minus 2

times * times 2

expt ^ raised-to-the 2

quotient / divided-by 2

remainder % remainder 2

equal = equal predicate 2

!= not-equal predicate 2

lessp < less-than predicate 2

greaterp > greater-than predicate 2

<= not-greater predicate 2

>= not-less predicate 2

Summary of Parenthesis-Free LISP

88 Part I|Survey

present a method for getting two new theories of LISP program-size

complexity: a theory of program size for the LISP presented in Section

2, which is the subject of this paper, and a theory of parenthesis-free

program size for the toy LISP in [3], which we shall say no more about.

So we have four LISP complexity theories altogether.5

It is straightforward to apply to parenthesis-free LISP the tech-

niques I used to study bounded-transfer Turing machines [6{9]. Let

us de�ne Hpf(x) where x is a bit string to be the size in characters

of the smallest parenthesis-free LISP M-expression whose value is the

list x of 0's and 1's. Consider the self-contained de�ned-from-scratch

parenthesis-free version of (append p q):

(fnc(app)(app p q)'fnc(x y)if at x y jn hd x(app tl x y))

| |

123456789012345678901234567890123456789012345678901234567

| | | | |

10 20 30 40 50

Here p is a minimal parenthesis-free LISP M-expression for the bit

string x, and q is a minimal parenthesis-free LISP M-expression for the

the bit string y. I.e., the value of p is the list of bits x and p is Hpf(x)
characters long, and the value of q is the list of bits y and q is Hpf(y)
characters long. (append p q) evaluates to the concatenation xy of

the bit strings x and y and is

Hpf(x) +Hpf(y) + 57 � 2

characters long. Hence

Hpf(xy) � Hpf(x) +Hpf(y) + 55:

Adding 55 to both sides of this inequality, we have

Hpf(xy) + 55 � [Hpf(x) + 55] + [Hpf(y) + 55]:

Therefore, let us de�ne H 0
pf as follows:

H 0
pf(x) = Hpf(x) + 55:

5The next paper in this series [5], on a character-string oriented dialect of LISP,
will add one more LISP complexity theory to the list, for a grand total of �ve!

LISP Program-Size Complexity III 89

H 0
pf is subadditive just like L(S), the maximum bounded-transfer Tur-

ing machine state complexity of an n-bit string:

H 0
pf(xy) � H 0

pf(x) +H 0
pf(y):

The discussion of bounded-transfer Turing machines in [6{9] therefore

applies practically word for word to H 0
pf. In particular, let B(n) be the

maximum of H 0
pf(s) taken over all n-bit strings s:

B(n) = max
jsj=n

H 0
pf(s) = max

jsj=n
Hpf(s) + 55:

Consider a string s that is n+m bits long and that has the maximum

complexityH 0
pf(s) possible for an (n+m)-bit string, namely B(n+m).

This maximum complexity (n + m)-bit string s can be obtained by

concatenating the string u of the �rst n bits of s with the string v of

the last m bits of s. Therefore we have

B(n+m) = B(juvj) = H
0
pf(uv) � H

0
pf(u) +H

0
pf(v) � B(juj) +B(jvj) = B(n) +B(m):

Thus B is subadditive:

B(n+m) � B(n) +B(m):

This extends to three or more addends. For example:

B(n+m+ l) � B(n+m) +B(l) � B(n) +B(m) +B(l):

In general, we have:

B(n+m+ l+ � � �) � B(n) +B(m) +B(l) + � � � :

From this subadditivity property it follows that if we consider an arbi-

trary n and k:

B(n) �
�
n

k

�
B(k) + max

i<k

B(i):

Hence

B(n) �
�
n

k
+O(1)

�
B(k) +O(1):

90 Part I|Survey

[Recall that in this context O(1) denotes a bounded term and o(1)

denotes a term that tends to the limit 0.6] Dividing through by n and

letting n!1, we see that

B(n)

n
�
�
1

k
+ o(1)

�
B(k) + o(1):

[Recall that

lim sup
n!1

'(n) = lim
n!1

supf'(k) : k � ng;

lim inf
n!1

'(n) = lim
n!1

inff'(k) : k � ng:

The supremum/infinum of a set of reals is the l.u.b./g.l.b. (least upper

bound/greatest lower bound) of the set. This extends the maximum

and minimum from �nite sets to in�nite sets of real numbers.7] There-

fore

lim sup
n!1

B(n)

n
� B(k)

k
:

Since this holds for any k, it follows that in fact

lim sup
n!1

B(n)

n
= inf

k

B(k)

k
= �:

This shows that as n goes to in�nity, B(n)=n tends to the �nite limit

� from above. Now we shall show that this limit � is greater than

zero. It is easy to see that because shorter LISP M-expressions may be

extended with blanks,

�maxjsj=n Hpf(s) � 2n:

Here � is the number of characters in the parenthesis-free LISP alpha-

bet. (This inequality merely states that LISP M-expressions of at least

this size are needed to be able to produce all 2n n-bit strings.8) In other

6See Hardy and Wright [10, p. 7].
7See Hardy [11].
8If it weren't for the fact that all shorter expressions are already included in this

count, this inequality would have the following slightly more cumbersome form:X
k�maxjsj=nHpf (s)

�
k
� 2n:

LISP Program-Size Complexity III 91

words,

2(log2 �)maxjsj=n Hpf(s) � 2n:

Thus

(log2 �)max
jsj=n

Hpf(s) � n:

I.e.,

max
jsj=n

Hpf(s) �
n

log2 �
:

Hence
maxjsj=n Hpf(s)

n
� 1

log2 �
:

Therefore

B(n)

n
=

maxjsj=nHpf(s) + 55

n
� 1

log2 �
+
O(1)

n
=

1

log2 �
+ o(1):

Thus we see that for all su�ciently large n, B(n)=n is bounded away

from zero:

0 <
1

log2 �
� lim inf

n!1

B(n)

n
:

Hence the �nite limit

lim
n!1

B(n)

n
= �;

which we already know exists, must be greater than zero. We can

thus �nally conclude that B(n) is asymptotic from above to a nonzero

constant � times n:
B(n) � �n;

� �n:
I.e., the \adjusted by +55" maximum parenthesis-free LISP complex-

ity H 0
pf(s) of an n-bit string s is asymptotic from above to a nonzero

constant � times n:

max
jsj=n

H 0
pf(s) � �n;

� �n:

In other words, the maximum parenthesis-free LISP complexityHpf(s)

of an n-bit string s is asymptotic to a nonzero constant � times n:

max
jsj=n

Hpf(s) � �n;

� �n� 55:

92 Part I|Survey

4. The Halting Probabilities
pf;

0
pf;

00
pf

In Section 3 we showed that the maximum possible parenthesis-free

LISP complexityHpf of an n-bit string is asymptotic to �n, just as was

the case with HLISP in [1, Section 8], even though we no longer count

all parentheses as part of the complexity of a LISP S-expression. With

this basic result in hand, one can immediately rework all of [1] for this

new complexity measure Hpf .

What about reworking the sequel [4], which studies the correspond-

ing incompleteness theorems and halting probabilities? Everything is

straightforward and immediate. The only problems that arise in re-

working the discussion in [4] to use Hpf instead of HLISP, are with

halting probabilities. We must �gure out (a) how to de�ne a new halt-

ing probability
pf to replace
LISP, and (b) how to prove that the

initial n-bit segment of the new version
0
pf of

0
LISP has Hpf � �n.

pf

Problem: How do we de�ne a new halting probability
pf to replace

LISP?

As was discussed in [4, Section 4], the sum

LISP =
X

(e) halts

��j(e)j

is � 1 and converges because non-atomic LISP S-expressions are self-

delimiting. I.e., no extension of an (e) included in
LISP is included

in
LISP. However, extensions of non-atomic parenthesis-free LISP M-

expressions may yield other valid M-expressions.

There is a simple general solution to this problem: In our imag-

ination we add a blank at the end of each parenthesis-free LISP M-

expression to cut o� possible extensions. With this imaginary modi�-

cation, it is again the case that no extension of a parenthesis-free LISP

M-expression is another valid parenthesis-free LISP M-expression, just

as was the case with non-atomic S-expressions in [4, Section 4]. In

other words, we de�ne the parenthesis-free LISP halting probability as

follows:

pf =
X

e halts

��jej�1:

LISP Program-Size Complexity III 93

This is summed over all parenthesis-free LISP M-expressions e that

have a value or are de�ned. In [4, Section 4] this sum is taken over

all non-atomic LISP S-expressions e that have a value or are de�ned.
Here we do not have to restrict the expressions e included in the sum

to be non-atomic. We have
pf � 1, as desired.

00
pf

The exact same method used to produce the halting probability in [4,

Section 8],
00
LISP, immediately yields a corresponding
00

pf.

00
pf =

1X
i=1

1X
j=1

�
ij
2�2dlog2 ie�2dlog2 je�2:

Here

�
ij
=

of j-bit strings that have parenthesis-free LISP complexity � i

of j-bit strings
:

Just as in [4, Section 8],
00
pf has the property that the string consist-

ing of the �rst n bits of the base-two expansion of
00
pf asymptotically

has maximum possible parenthesis-free LISP complexity �n. Thus we
can follow [4, Section 5] and construct from
00

pf diophantine equations

D1 and D2 with the following property: To answer either the �rst n

cases of the yes/no question Q1 in [4, Section 5] about equation D1

or the �rst n cases of the yes/no question Q2 in [4, Section 5] about

equation D2 requires a formal system with parenthesis-free LISP com-

plexity > �n + o(n). I.e., the proof-checking function associated with

a formal system that enables us to determine the �rst n bits of the

base-two expansion of
00
pf must have parenthesis-free LISP complexity

> �n+ o(n).

0

pf

Following [4, Section 7],
0
pf =

P1
n=1 of

of di�erent � n character parenthesis-free LISP M-expressions that halt

2dlog2(total # of di�erent � n character parenthesis-free LISP M-expressions)e+2dlog2 ne+1
:

94 Part I|Survey

The proof in [4, Section 7] that an initial n-bit segment of
0
LISP as-

ymptotically has maximum possible complexity �n no longer works for

0
pf. The problem is showing that there is a real number
 such that

n � log2 Sn

where

Sn = # of di�erent � n character parenthesis-free LISP M-expressions.

As was the case in de�ning
pf , the trick is to imagine an extra blank at

the end of each M-expression. In other words, everywhere \� n char-

acter M-expressions" appears, one must change this to \< n character

M-expressions." So the �x is that now we consider instead

Sn = # of di�erent < n character parenthesis-free LISP M-expressions.

As was the case with the de�nition of
pf , this trick automatically takes

care of the fact that atomic M-expressions are not self-delimiting. For

0
pf it is not necessary to follow the proof in [4, Section 7] and consider

S0
n
, which is the number of expressions counted in S

n
that are non-

atomic. Instead one works directly with S
n
, and it is now the case that

S
nk+3 � (S

k
)n.

Thus
0
pf has the property that the string consisting of the �rst

n bits of the base-two expansion of
0
pf asymptotically has maximum

possible parenthesis-free LISP complexity �n. Thus we can follow [4,

Section 5] and construct from
0
pf diophantine equations D1 and D2

with the following property: To answer either the �rst n cases of the

yes/no question Q1 in [4, Section 5] about equation D1 or the �rst

n cases of the yes/no question Q2 in [4, Section 5] about equation D2

requires a formal system with parenthesis-free LISP complexity> �n+

o(n). I.e., the proof-checking function associated with a formal system

that enables us to determine the �rst n bits of the base-two expansion

of
0
pf must have parenthesis-free LISP complexity > �n+ o(n).

In summary, we see that all of [1, 4] carries over from LISP complexity

to parenthesis-free LISP complexity.

LISP Program-Size Complexity III 95

5. Improving Parenthesis-Free LISP

Following [3], here is an improvement to parenthesis-free LISP.

Let's add let, read as \let: : : be: : :". let has three arguments. If

the �rst argument is an atom, the M-expression

let x v e

stands for the S-expression

((fnc (x) e) v)

I.e., evaluate e with x bound to the value of v. On the other hand, the

M-expression

let (f x y...) d e

stands for the S-expression

((fnc (f) e) ('(fnc (x y...) d)))

I.e., evaluate e with f bound to the de�nition of a function whose formal

parameters are x y: : : and having d as the body of its de�nition.

Here is an example, a single M-expression:

let (app x y) if at x y

jn hd x (app tl x y)

let x '(a b c)

let y '(d e f)

(app x y)

The value of this expression is:

(a b c d e f)

Evaluating the following four M-expressions gives the same �nal value,

but leaves app, x, and y de�ned.

def (app x y) if at x y

jn hd x (app tl x y)

def x '(a b c)

def y '(d e f)

(app x y)

The let notation makes our parenthesis-free LISP more convenient

to use, and all the proofs in Sections 3 and 4 go through without change

with let added.

96 Part I|Survey

References

[1] G. J. Chaitin, \LISP program-size complexity," Applied Math-

ematics and Computation 49 (1992), 79{93.

[2] J. McCarthy et al., LISP 1.5 Programmer's Manual, Cam-

bridge MA: MIT Press (1962).

[3] G. J. Chaitin, Algorithmic Information Theory, 3rd Printing,

Cambridge: Cambridge University Press (1990).

[4] G. J. Chaitin, \LISP program-size complexity II," Applied

Mathematics and Computation, in press.

[5] G. J. Chaitin, \LISP program-size complexity IV," Applied

Mathematics and Computation, in press.

[6] G. J. Chaitin, \On the length of programs for computing �-

nite binary sequences by bounded-transfer Turing machines," Ab-

stract 66T{26, AMS Notices 13 (1966), 133.

[7] G. J. Chaitin, \On the length of programs for computing �-

nite binary sequences by bounded-transfer Turing machines II,"

Abstract 631{6, AMS Notices 13 (1966), 228{229.

[8] G. J. Chaitin, \On the length of programs for computing �nite

binary sequences," Journal of the ACM 13 (1966), 547{569.

[9] G. J. Chaitin, \On the length of programs for computing �nite

binary sequences: Statistical considerations," Journal of the ACM

16 (1969), 145{159.

[10] G. H. Hardy and E. M. Wright, An Introduction to the The-

ory of Numbers, Oxford: Clarendon Press (1990).

[11] G. H. Hardy, A Course of Pure Mathematics, Cambridge:

Cambridge University Press (1952).

LISP PROGRAM-SIZE

COMPLEXITY IV

Applied Mathematics and Computation

52 (1992), pp. 141{147

G. J. Chaitin

Abstract

We present a new \character-string" oriented dialect of LISP in which

the natural LISP halting probability asymptotically has maximumpos-

sible LISP complexity.

1. Introduction

This paper continues the study of LISP program-size complexity in my

monograph [1, Chapter 5] and the series of papers [2{4].

In this paper we consider a dialect of LISP half-way between the

Copyright c
 1992, Elsevier Science Publishing Co., Inc., reprinted by permission.

97

98 Part I|Survey

LISP considered in my paper [2] (which is essentially normal LISP [5])

and that studied in my monograph [1]. The \character-string" LISP

studied in this paper employs multiple-character atoms as in [2], but

allows all possible character strings as S-expressions subject only to

the requirement that parentheses balance as in [1]. Precise counts of

S-expressions as in [1] rather than subadditivity arguments as in [2], are

used to show that the maximum possible character-string LISP com-

plexity Hcs(s) of an n-bit string s is �n+O(log n), where � = 1= log2 �

and � = the number of characters in the alphabet. A particularly

natural de�nition of a character-string LISP halting probability
cs is

presented here. The n-bit initial segment of the base-two expansion of

cs asymptotically achieves maximum possible character-string LISP

complexity �n. Indeed, the entire theory developed in [1, Section 5.1]

for toy LISP and in [2, 3] for HLISP can be reformulated in terms of

Hcs.

2. Pr�ecis of Character-String LISP

Let's put the LISP of [5] on the operating table and examine it from an

information-theoretic point of view. The problem is that sometimes dif-

ferent looking S-expressions produce the same internal structure when

read in by the LISP interpreter and look the same if then written out.

In other words, the problem is synonyms! Information is being wasted

because not all di�erent strings of characters in the external represen-

tation of an S-expression lead to di�erent S-expressions in the internal

representation, which consists of binary trees of pointers.

In my monograph [1] I �xed this by using drastic surgery. First of

all, blanks are eliminated and all atoms are exactly one character long.

Next, () and nil are no longer synonyms, because the only way to

denote the empty list is via (). And \true" and \false" are 1 and 0

instead of t and nil.

The illness is serious, but the cure in [1] is rather drastic. Here we

present another way to eliminate synonyms and improve the expressive

power of LISP from an information-theoretic point of view. This time

the aim is to keep things as much as possible the way they are in normal

LISP [5]. So each extra, not-strictly-necessary blank is now a \blank

LISP Program-Size Complexity IV 99

atom," which prints as a blank or when we want to show it. And

both nil and () denote an empty list, but will print out di�erently and

compare di�erent internally using the LISP primitive function eq.

Also we allow any succession of characters in a legal S-expression

between an opening left parenthesis and a closing right parenthesis, and

consider that each such S-expression is di�erent. The only rule is that

parentheses must balance.

I think that a good way to express this idea is to call it a \character-

string" oriented version of LISP. It might also be called a \wysiwyg"

(\what you see is what you get") version of LISP. The external represen-

tation of S-expressions is now taken seriously; before only the internal

representation of S-expressions really counted.

In summary, internal and external format are now precisely equiv-

alent, and reading an S-expression in and then writing it out gives

exactly the same thing back that was read in. There are no synonyms:

() and nil are di�erent, 00022 and 22 are di�erent, and (x y) and

(x y) are di�erent. Each di�erent string of characters is a di�erent

S-expression and blanks within an S-expression are respected. 0x0x is

a valid atom.

For example, the following S-expressions are all di�erent:

(a b nil)

(a b ())

(a b())

(a b ())

(a b())

(a b ())

(a b())

(a b ())

(a b())

(a b nil)

100 Part I|Survey

(a b nil)

(a b ())

In normal LISP, these would all be the same S-expression. And the

LISP primitive-function eq is de�ned to be character-string equality,

so that it can see that all these S-expressions are di�erent.

But what do these S-expressions with blanks mean? Consider the

following character-string LISP S-expression:

(abc def)

The �rst three blanks denote three blank atoms. The second three

blanks denote only two blank atoms. And the last three blanks denote

three blank atoms. Blank atoms are always a single blank.
In general, n consecutive blanks within an S-expression will either

denote n blank atoms or n�1 blank atoms; it will be n�1 blank atoms

i� the blanks separate two consecutive atoms 6=(). In other words, n
consecutive blanks denote n blank atoms except when they separate

two characters that are neither parentheses nor blanks:

: : : abc def: : :

In this situation, and only this situation, n+ 1 blanks denote n blank

atoms. E.g., a single blank separating two atoms that are 6=() does

not entail any blank atoms:

: : :abc def: : :

On the other hand, here there is no blank atom:

: : : (abc)(def): : :

And here there is exactly one blank atom:

: : : (abc) (def): : :

With this approach, append of two S-expressions will carry along

all the blanks in its operands, and will add a blank if the �rst list ends

with an atom 6=() and the second list begins with an atom 6=():

LISP Program-Size Complexity IV 101

$(append('(a b c))('(d e f)))! (a b c d e f)

$(append('(a b c))('((d) e f)))! (a b c (d) e f)

Thus the result of appending a list of n elements and a list ofm elements

always has n+m elements as usual. $ starts a mode in which all blanks

are signi�cant in the next complete S-expression. In the normal mode,

excess blanks are removed, as is usual in LISP.

A few more words on $: Normally, extra blanks are helpful in writ-

ing S-expressions, to indicate their structure, but we don't really want

the blank atoms. So we use the LISP input \meta-character" $ to in-

dicate that in the next complete S-expression extra blanks should not

be removed. For example, $ is a single blank atom. And $() is a

list of three blank atoms. But the input expression

(a $() b)

denotes

(a()b)

because the extra blanks next to the a and the b are outside the range

of the $. The use of $ as a meta-character makes it impossible to have

$'s in the name of an atom.

Note that when taking car, cdr and cons, blanks are usually just

carried along, but sometimes a single blank must be stripped o� or

added. The following examples explain how this all works:

� $(car('(a b c)))!

$(cdr('(a b c)))! (a b c)

$(cons(')('(a b c)))! (a b c)

� $(cons('a)('(b c)))! (a b c)

(adds one blank after the a)

$(cons('a)('(b c)))! (a b c)

(adds one blank after the a)

$(cdr('(a b c)))! (b c)

(eliminates one blank after the a)

102 Part I|Survey

� $(cons('a)('((b) c)))! (a(b) c)

(doesn't add one blank after the a)

$(cons('a)('((b) c)))! (a (b) c)

(doesn't add one blank after the a)

$(cdr('(a (b) c)))! ((b) c)

(doesn't eliminate one blank after the a)

� $(cons('a)('nil))! (a)

$(cons('a)('()))! (a)

$(cdr('(a)))! nil

(cdr never yields ())

� $(eq('nil)('()))! nil

The primitive functions car, cdr and cons are de�ned so that if there

are no extra blanks, they give exactly the same value as in normal

LISP. The primitive-function eq is de�ned to be character-string equal-

ity of entire S-expressions, not just atoms. Of course, the convert S-

expression to character-string primitive function (see [2, Section 2])

gives each repeated blank; this and eq are a way to extract all the

information from an S-expression. And the convert character-string to

S-expression primitive function (see [2, Section 2]) is able to produce

all possible S-expressions.

In summary, this new approach avoids the fact that () is the same as

nil and blanks are often ignored in LISP. We now allow and distinguish

all combinations of blanks; this makes it possible to pack much more

information in an S-expression. We must also allow names of atoms

with any possible mix of characters, as long as they are neither blanks

nor parentheses; we cannot outlaw, as normal LISP does, the atom

9xyz. In normal LISP [5], if an atom begins with a digit, it must all be

digits. In our LISP, 9xyz is allowed as the name of an atom. Thus our

de�nition of an integer is that it is an atom that is all digits, possibly

preceded by a minus sign (hyphen), not an atom that begins with a

digit. Also we must allow numbers with 0's at the left like 00022, and

eq must consider 00022 and 022 to be di�erent. There is a di�erent

equality predicate \=" that is for numbers.

LISP Program-Size Complexity IV 103

Note that it is still possible to implement character-string LISP

e�ciently via binary trees of pointers as is done in normal LISP. Ef-

�cient implementations of normal LISP are based on cells containing

two pointers, to the car and the cdr of an S-expression (see [5]).

3. The Halting Probability
cs

Of course the character-string LISP complexity Hcs(x) of an S-

expression x is now de�ned to be the minimum size in characters jej of
a character-string LISP S-expression e that evaluates to x. Here e is
in the \o�cial" character-string LISP notation in which every blank is

signi�cant, not in the \meta-notation" used in Section 2 in which only

blanks in the range of a $ are signi�cant.

The new idea that we presented in Section 2 is to think of LISP

S-expressions as character strings, to allow any succession of charac-

ters in a legal S-expression between an opening left parenthesis and a

closing right parenthesis, and to consider that each such S-expression

is di�erent. The only rule is that parentheses must balance. From the

discussion of toy LISP in [1], we know that having parentheses balance

does not signi�cantly decrease the multiplicative growth of the num-

ber of possibilities. I.e., the number of S-expressions with n characters

has a base-two logarithm that is asymptotic to n log2 �, where � is the

number of characters in the LISP alphabet including the blank and

both parentheses. (See [1, Appendix B].)

More precisely, the analysis of [1, Appendix B] gives the exact num-

ber and the asymptotics of the non-atomic character-string LISP S-

expressions of size n. There are also (� � 3)n atomic character-string

LISP S-expressions of size n, which is negligible in comparison. Thus

the total number S
n
of character-string LISP S-expressions with exactly

n characters is asymptotic to

S
n
� �n�2

2
p
�(n=�)1:5

:

Hence

log2 Sn = n log2 � +O(log n):

104 Part I|Survey

From this it is easy to see that the maximum possible character-string

LISP complexityHcs(s) of an n-bit string s is �n+O(log n), where � =

1= log2 � and � = the number of characters in the alphabet (including

the blank and both parentheses).

We see that the rules in Section 2 remove almost all the redun-

dancy in normal LISP S-expressions.1 Also, because no extension of a

non-atomic S-expression (e) is a valid non-atomic S-expression, we can

de�ne a character-string LISP halting probability
cs as follows:

cs =
X

(e) has a value

��[size of (e)] =
X

(e) halts

��j(e)j:

Just as in [3, Section 4], we see that being given the �rst n+O(log n)
bits of the base-two expansion of
cs would enable one to determine

the character-string LISP complexity Hcs of each � n bit string. The

maximumof Hcs(s) taken over all � n bit strings s is asymptotic to �n.

As in [3, Section 4], it follows that the string consisting of the �rst n
bits of the base-two expansion of
cs itself asymptotically has maximum

possible character-string LISP complexity Hcs � �n.2 Thus we can

follow [3, Section 5] and construct from
cs diophantine equations D1

and D2 with the following property: To answer either the �rst n cases

of the yes/no question Q1 in [3, Section 5] about equationD1 or the �rst

n cases of the yes/no question Q2 in [3, Section 5] about equation D2

requires a formal system with character-string LISP complexity> �n+
o(n). I.e., the proof-checking function associated with a formal system

that enables us to determine the �rst n bits of the base-two expansion

of
cs must have character-string LISP complexity > �n+ o(n).

References

[1] G. J. Chaitin, Algorithmic Information Theory, 3rd Printing,

Cambridge: Cambridge University Press (1990).

1Hence minimal character-string LISP S-expressions for a given result are essen-
tially unique, and can also be proved to be \normal" (i.e., in the limit, all � possible
characters occur with equal relative frequency). See [1, Section 5.1].

2From this it is not di�cult to show that
cs is Borel normal in every base.
See [3, Section 9].

LISP Program-Size Complexity IV 105

[2] G. J. Chaitin, \LISP program-size complexity," Applied Math-

ematics and Computation 49 (1992), 79{93.

[3] G. J. Chaitin, \LISP program-size complexity II," Applied

Mathematics and Computation, in press.

[4] G. J. Chaitin, \LISP program-size complexity III," Applied

Mathematics and Computation, in press.

[5] J. McCarthy et al., LISP 1.5 Programmer's Manual, Cam-

bridge MA: MIT Press (1962).

106 Part I|Survey

INFORMATION-

THEORETIC

INCOMPLETENESS

Applied Mathematics and Computation

52 (1992), pp. 83{101

G. J. Chaitin

Abstract

We propose an improved de�nition of the complexity of a formal ax-

iomatic system: this is now taken to be the minimum size of a self-

delimiting program for enumerating the set of theorems of the formal

system. Using this new de�nition, we show (a) that no formal system of

complexity n can exhibit a speci�c object with complexity greater than

n + c, and (b) that a formal system of complexity n can determine at

most n+ c scattered bits of the halting probability
. We also present

a short, self-contained proof of (b).

Copyright c
 1992, Elsevier Science Publishing Co., Inc., reprinted by permission.

107

108 Part I|Survey

1. Introduction

The main incompleteness theorems of myAlgorithmic Information The-

ory monograph [16] are reformulated and proved here using a new and

improved de�nition of the complexity of a formal axiomatic system.

This new approach is the self-delimiting version of that used in my

long 1974 paper [4], which may be contrasted with my short 1974 pa-

per [3]. In other words, this paper and my monograph [16] stand in the

same relation as my papers [4] and [3] do.

The new idea is to measure the complexity of a formal system in

terms of the program-size complexity of enumerating its in�nite set

of theorems, not in terms of the program-size complexity of the �nite

string of the axioms.

This new approach combines in a single number the complexity of

the axioms and the rules of inference, and the new complexity�0 is never
more than c greater and can sometimes be up to � log2 � less than the

old complexity �. Thus the incompleteness results given here are never

weaker and are sometimes somewhat stronger than the incompleteness

results in [16].

In addition, this new approach led me to a short, self-contained

proof (presented in Section 9) that it is hard to determine scattered

bits of the halting probability
. While the general theory developed

in my monograph [16] is still necessary to substantiate my thesis that

there is randomness in arithmetic, there is now a short-cut to the result

on the di�culty of determining scattered bits of
.

2. Bit String Complexity

Following Chaitin [6, 16], a computer C is a partial recursive function

that maps a program p (a bit string) into an output C(p), which is also
a bit string. C is not given the entire program p immediately. Instead,

C must request each bit of p, one bit at a time [6]. If a bit is requested

it is always provided, so that in a sense programs are initial segments

of in�nite bit strings. The blank-endmarker approach in [3, 4] may also

be considered to request one bit at a time, but di�ers from the self-

delimiting approach used here because requesting a bit may also yield

Information-Theoretic Incompleteness 109

a blank, indicating that the program has ended.

A more abstract formulation of this self-delimiting program ap-

proach, but one that can be proved [6] to be entirely equivalent, is

to stipulate that a computer C has the property that no extension of

a valid program is a valid program. I.e., if p0 is an extension of p,
then C(p0) cannot be de�ned if C(p) is de�ned. In other words, the

set of valid programs, which is the domain of de�nition of the partial

recursive function C, is a so-called \pre�x-free set."

The complexity H
C
(x) of the string x based on the computer C is

the size in bits jpj of the smallest program p for computing x with C:

H
C
(x) = min

C(p)=x
jpj:

In addition to this complexity measure, there are related probabilities

that take into account all programs that produce a given result, not

just the smallest ones. The probability P
C
(x) of the string x based on

the computer C is the probability that C computes x if each bit of the

program p is the result of an independent toss of a fair coin:

P
C
(x) =

X
C(p)=x

2�jpj:

It is easy to see that this sum converges and must be between zero

and one, because the p that are summed are a pre�x-free set. I.e., if a

program p is included in this sum, then no extension of p is included in

this sum.

De�ne a universal computer U as follows:

U(

i 0'sz }| {
000 � � � 000 1p) = C

i
(p):

Here C
i
is the computer with G�odel number i, i.e., the ith computer.

Hence

H
U
(x) � H

Ci
(x) + (i+ 1)

and

P
U
(x) � P

Ci
(x) 2�(i+1)

110 Part I|Survey

for all strings x. The general de�nition of a universal computer U is

that it has the property that for each computer C there is a pre�x �
C

such that

U(�
C
p) = C(p)

for all p. I.e., the pre�x �
C
tells U how to simulate C. Hence for

each computer C there is a constant sim
C
= j�

C
j (the cost in bits of

simulating C) such that

H
U
(x) � H

C
(x) + sim

C

and

P
U
(x) � P

C
(x) 2�simC

for all x. The universal computer U we de�ned above satis�es this

de�nition with sim
Ci
= i+1. We pick this particular universal computer

U as our standard one and de�ne the complexity H(x) to be H
U
(x),

and the algorithmic probability P (x) to be P
U
(x):

H(x) = H
U
(x); P (x) = P

U
(x):

The halting probability
 is the total algorithmic probability:

 =
X
x

P (x) =
X

U(p) is de�ned

2�jpj:

 is a real number between zero and one, and we also think of it as the

in�nite bit string of its binary digits. In [16] it is shown that
 satis�es

three di�erent but equivalent de�nitions of randomness: the construc-

tive measure-theoretic de�nitions of Martin-L�of and Solovay, and

the complexity-theoretic de�nition of Chaitin. (An alternative:

0 <
0 =
X
x

2�H(x) < 1:

This often works just as well.)

3. Discussion

A fundamental theorem shows that the complexity measure H and the

algorithmic probability P are closely related:

H(x) = � log2 P (x) +O(1):

Information-Theoretic Incompleteness 111

Another basic fact is that most bit strings s of length n have close to

the maximum possible complexity

max
jsj=n

H(s) = n +H(n) +O(1) = n+O(log n):

How close are the complexities of most n-bit strings s to the maximum

possible? The number of n-bit strings s with complexity k less than

the maximum drops o� exponentially:

#

�
jsj = n : H(s) < n+H(n)� k

�
< 2n�k+c:

The reason for picking a computer U with self-delimiting programs

to measure program-size complexity, is that self-delimiting programs

can be concatenated. For example, if U(p) = x and U(q) = y, then
we can compute x and y if we are given pq, the concatenation of the

programs p and q.

4. Exhibiting Complex Strings

Now to metamathematics! First we do things the old way.

Following Chaitin [3, 8, 16], the rules of inference F are a recur-

sively enumerable set of ordered pairs of the form hA;T i indicating that
the theorem T follows from the axiom A:

F = f hA1; T1i; hA2; T2i; hA3; T3i; : : : g:

Instead of hA;T i 2 F , one often writes A `
F
T . (The axiom A is

represented as a bit string via some standard binary encoding.) F is

�xed, and A varies.

Theorem A (Chaitin [8]1): Consider a formal system F
A
con-

sisting of all theorems derived from an axiom A by applying the rules

of inference F . The formal system F
A
cannot exhibit a speci�c string

with complexity > H(A) + c
F
. More precisely, if A `

F
H(s) > n only

if H(s) > n, then A `
F
H(s) > n only if n < H(A) + c

F
.

1See [1{5] for early versions of this information-theoretic incompleteness theorem.

112 Part I|Survey

Proof: Consider a special-purpose computer C that does the fol-

lowing when given a minimal-size program p
k
for the natural number

k followed by a minimal-size program p
A
for the axiom A:

C(p
k
p
A
) =

(
The �rst speci�c string s?

that can be shown in FA to

have complexity> k + jpAj.

Here

U(p
k
) = k; jp

k
j = H(k);

and

U(p
A
) = A; jp

A
j = H(A):

How does C accomplish this? First C simulates running p
k
on U to

determine the natural number k. Then C simulates running p
A
on U

to determine the axiom A. Now C knows A and k. C then searches

through all proofs derived from the axiom A, searching through the

possible proofs in size order, and among those of the same size, in some

arbitrary alphabetical order, applying the proof-checking algorithm as-

sociated with the �xed rules of inference F to each proof in turn. (More

abstractly, C enumerates the set of theorems

F
A
= fT : A `

F
T g = fT : hA;T i 2 F g:

) In this manner C determines each theorem that follows from the

axiom A. C examines each of these theorems until it �nds the �rst one

of the form

\H(s?) > j"

that asserts that a speci�c bit string s? has complexity greater than a

speci�c natural number j that is greater than or equal to k plus the

complexity jp
A
j of the axiom A:

j � k + jp
A
j:

C then outputs the string s? and halts. Hence

H
C
(s?) � jp

k
p
A
j;

and

k + jp
A
j < H(s?) � jp

k
p
A
j+ sim

C
:

Information-Theoretic Incompleteness 113

We therefore have the following crucial inequality:

k +H(A) < H(s?) � H(k) +H(A) + sim
C
:

This implies

k < H(k) + sim
C
= O(log k);

which can only be true for �nitely many values of k. Pick c
F
to be a k

that violates this inequality. It follows that s? cannot exist for k = c
F
.

The theorem is therefore proved. Q.E.D.

5. Set Enumeration Complexity

Following Chaitin [7, 8], we extend the formalism of Section 2 from

�nite computations with a single output to in�nite computations with

an in�nite amount of output. Consider a new class of computers, com-

puters that never halt, and which we shall refer to as enumeration

computers, or e-computers for short. An e-computer C is given by a

total recursive function that maps its program p into the recursively-

enumerable set of bit strings C(p). C must request each bit of the

program p, and cannot run o� the end of p, so p is self-delimiting. But

p's total extent now only emerges in the limit of in�nite time.

The complexity H
C
(S) of the set S based on the e-computer C is

the size in bits jpj of the smallest program p for enumerating S with C:

H
C
(S) = min

C(p)=S
jpj:

The probability P
C
(S) of the set S based on the e-computer C is the

probability that C enumerates S if each bit of the program p is produced

by an independent toss of a fair coin:

P
C
(S) =

X
C(p)=S

2�jpj:

De�ne a universal e-computer Ue as follows:

Ue(

i 0'sz }| {
000 � � � 000 1p) = C

i
(p):

114 Part I|Survey

Here C
i
is the e-computer with G�odel number i, i.e., the ith e-

computer. Hence

H
Ue
(S) � H

Ci
(S) + (i+ 1)

and

P
Ue
(S) � P

Ci
(S) 2�(i+1)

for all sets S. The general de�nition of a universal e-computer Ue is

that it has the property that for each e-computer C there is a pre�x

�
C
such that

Ue(�C p) = C(p)

for all p. I.e., the pre�x �
C
tells Ue how to simulate C. Hence for

each e-computer C there is a constant sim
C
= j�

C
j (the cost in bits of

simulating C) such that

H
Ue
(S) � H

C
(S) + sim

C

and

P
Ue
(S) � P

C
(S) 2�simC

for all sets S. The universal e-computer Ue we de�ned above satis�es

this de�nition with sim
Ci

= i + 1. We pick this particular universal

e-computer Ue as our standard one and de�ne the e-complexity2 He(S)
to be H

Ue
(S), and the enumeration probability Pe(S) to be PUe(S):

He(S) = H
Ue
(S); Pe(S) = P

Ue
(S):

In summary, the e-complexityHe(S) of a recursively-enumerable set

S is the size in bits jpj of the smallest computer program p that makes

our standard universal e-computer Ue enumerate the set S. Pe(S) is
the probability that our standard universal e-computer Ue enumerates

the set S if each bit of the program p is produced by an independent

toss of a fair coin.

6. Discussion

The programs p
A
and p

B
for enumerating two sets A and B can be

concatenated. More precisely, the bits in the two programs p
A
and p

B

2In full, the \enumeration complexity."

Information-Theoretic Incompleteness 115

can be intertwined or merged in the order that they are read by two

copies of the universal e-computer Ue running in parallel and sharing a

single program bit stream. Thus e-complexity is additive, because the

size of the intertwined bit string p
A
� p

B
is the sum of the sizes of the

original strings p
A
and p

B
.

Let's show some applications of intertwining. De�ne the e-

complexity of a function f to be the e-complexity of the graph of f ,

which is the set of all ordered pairs hx; f(x)i. By intertwining,

He(

�
f(x) : x 2 X

�
) < He(f) +He(X) + c:

Here is the cartesian product of two sets:

He(

�
hx; yi : x 2 A; y 2 B

�
) < He(A) +He(B) + c:

Two other examples of intertwining:

He(A \B) < He(A) +He(B) + c;

and

He(A [B) < He(A) +He(B) + c:

Here is a horse of a di�erent color:

H('((x))) < He(') +He() +H(x) + c:

7. Exhibiting Complex Objects

While a minimal-size program for the computer U tells us its size as

well as its output

H(x;H(x)) = H(x) +O(1);

this is not the case with a minimal-size program for the e-computer Ue.

Instead we only get its size in the limit from below:

He(X; f0; 1; 2; : : : ;He(X)g) = He(X) +O(1):

116 Part I|Survey

(It is annoying to have to de�ne H and He for multiple arguments.

Intuitively, one simply computes several outputs simultaneously.3) In

the proof that

A `
F
H(s) > n =) n < H(A) + c

F

in Section 4, it is important that C knows jp
A
j = H(A) as well as A.

So it looks like we cannot prove that

\H(s) > n" 2 T =) n < He(T) + c:

Surprisingly, everything works anyway.

Theorem B: Consider a formal system consisting of a recursively

enumerable set T of theorems. The formal system T cannot exhibit a

speci�c string with complexity> He(T)+c. More precisely, if a theorem

of the form \H(s) > n" is in T only if it is true, then \H(s) > n" is in
T only if n < He(T) + c.

Proof: Consider a special-purpose computer C that is given as

its program a minimal-size program p
k
for the singleton set fkg of

the natural number k appropriately intertwined with a minimal-size

program p
T
for the set of theorems T . Here

Ue(pk) = fkg; jp
k
j = He(fkg);

and

Ue(pT) = T; jp
T
j = He(T):

When C is given p
k
intertwined with p

T
it does the following. C runs

p
k
and p

T
in parallel on Ue to determine k and enumerate the set of

theorems T . As C enumerates T , C keeps track of the number � of

bits of p
T
that it has read. At some point C will �nd k. Thereafter, C

continually checks T until C �nds a theorem of the form

\H(s?) > j"

3Here are some more formal de�nitions. For H, one can compute a tuple
hx; y; z; : : :i. The tuple mapping is a computable one-to-one correspondence be-
tween bit strings and singletons, pairs, triples; : : : of bit strings. For He, one can
enumerate several sets A;B;C; : : : by pre�xing the elements of each with a di�erent
pre�x:

f1x : x 2 Ag [f01x : x 2 Bg [f001x : x 2 Cg [� � �

Information-Theoretic Incompleteness 117

asserting that a speci�c string s? has complexity greater than a speci�c

natural number j that is greater than or equal to k plus the current

value of �:
j � k + �:

C then outputs the string s? and halts. It is possible that not all bits

of p
k
and p

T
have been read by C; unread bits of p

k
and p

T
are not

actually included in the intertwined program for C. Let p0
k
and p0

T
be

the portions of p
k
and p

T
that are actually read. Thus the �nal value

of � must satisfy
� = jp0

T
j � He(T):

In summary,

C(p0
k
� p0

T
) = s?; \H(s?) > j" 2 T; j � k + �:

Thus s? must have the property that

H
C
(s?) � jp0

k
j+ jp0

T
j � He(fkg) + �:

We therefore have the following crucial inequality:

k + � < H(s?) � He(fkg) + �+ sim
C
:

Note that

He(fkg) + �+ sim
C
< O(log k) + �:

Hence

k + � < H(s?) < O(log k) + �:

This implies

k < O(log k);

which can only be true for �nitely many values of k. Pick c to be a

value of k that violates this inequality. For k = c, s? cannot exist and

C can never halt. Thus T cannot contain any theorem of the form

\H(s?) > j"

with

j � He(T) + k;

118 Part I|Survey

because

He(T) + k � k + �

and C would halt. The theorem is therefore proved. Q.E.D.

Recall the setup in TheoremA: the �xed rules of inference F and the

variable axiom A yield the set of theorems F
A
. Let's apply Theorem

B to the set of theorems F
A
so that we can compare how powerful

Theorems A and B are. Here is what we get:

Theorem A: A `
F
H(s) > n =) n < H(A) + c

F
:

Theorem B: \H(s) > n" 2 F
A

=) n < He(FA) + c:

The e-complexity He(FA) is never more than c bits larger and can

sometimes be up to � log2H(A) bits smaller than the complexityH(A).
This is because it is sometimes much easier to give the size jpj of a
program in the limit from below than to give the size of a program and

then halt. It all boils down to the fact that He(f0; 1; 2; : : : ; jpjg) can
be insigni�cant in comparison with H(jpj) (see [7, Section 3]). Thus

Theorem B is never weaker and sometimes is a little stronger than

Theorem A.

Let's look at some other consequences of the method used to estab-

lish Theorem B.

We have seen that one can't exhibit complex strings. What about

sets? One can't exhibit e-complex sets:

\He(Ue(p)) > n" 2 T =) n < He(T) + c:

Here is a bound on what can be accomplished with a single axiom

A and the rules of inference F :

A `
F
H(s) > n =) n < H(A) +He(F) + c:

Recall that Theorem A only asserted that

A `
F
H(s) > n =) n < H(A) + c

F
:

Consider the set of theorems T derived from a set of axioms A
using the rules of inference F . (Now F is a recursively enumerable

Information-Theoretic Incompleteness 119

set of ordered pairs each consisting of a �nite set of axioms and a

consequence.) We have

He(T) � He(A) +He(F) + c:

And we get the following bound on what can be accomplished with the

set of axioms A and the rules of inference F :

A `
F
H(s) > n =) n < He(A) +He(F) + c:

8. Determining Bits of

In the same spirit as TheoremB in Section 7, here is a new and improved

version of the key theorem in [16, Chapter 8] that one can determine

at most n+ c bits of the halting probability
 with a formal system of

complexity n.

Theorem C: Consider a formal system consisting of a recursively

enumerable set T of theorems. If the formal system T has the property

that a theorem of the form

\The nth bit of
 is 0/1."

is in T only if it is true, then at mostHe(T)+c theorems of this form are

in T . In other words, if the e-complexity of T is n, then T can enable

us to determine the positions and values of at most n+ c scattered bits

of
.

Proof: (By reductio ad absurdum.) Suppose on the contrary that

for each k there is a formal system T that enables us to determine

He(T) + k bits of
. We shall show that this contradicts the fact (see

[16]) that
 is a Martin-L�of random real number.

Here is a way to produce a set of intervals A
k
that covers
 and has

measure �(A
k
) � 2�k. I.e., a way that given k, we can enumerate a set

of intervals A
k
that includes
 and whose total length is � 2�k .

Start running for more and more time all possible programs p on

the standard universal e-computer Ue. If at any point we have read

� � jpj bits of a program p while enumerating its output Ue(p) and this

output includes �+ k theorems of the form

\The nth bit of
 is 0/1."

120 Part I|Survey

determining �+ k bits of
, then we do the following:

1. The � + k theorems in Ue(p) give us a set of intervals of total

measure 2�(�+k) that covers
. More precisely, this set of inter-

vals covers
 if Ue(p) is a truthful formal system. We add these

intervals to the set of intervals A
k
.

2. We stop exploring this subtree of the tree of all possible programs

p. In other words, we don't continue with the current program p
nor do we examine any program whose �rst � bits are the same

as the �rst � bits of p. This removes from further consideration

all programs in an interval of length 2��, i.e., a set of programs

of measure 2��.

For each k, the set of intervals A
k
will have total measure �(A

k
) �

2k.
 cannot be in all the A
k
or
 would not beMartin-L�of random,

which it most certainly is [16]. Therefore
 is in only �nitely many of

the A
k
. Let c be the �rst k for which
 is not in A

k
, i.e., such that

we never �nd a way of determining �+ k bits of
 with only � bits of
axioms. Q.E.D.

9. A Di�erent Proof

In Section 8 it was shown that a formal system of e-complexity n cannot
determine the positions and values of more than n+c bits of
 (Theorem

C). The proof is like an iceberg, because it depends on the theory

systematically developed in the second half of mymonograph [16]. Here

is a rather di�erent proof that is essentially self-contained.4

Theorem C: A formal system T can enable us to determine the

positions and values of at most He(T) + c bits of
. In other words, if

a theorem of the form

\The nth bit of
 is 0/1."

4An analogous situation occurs in elementary number theory. See the remarkably
simple Zermelo{Hasse{Lord Cherwell proof of the unique prime factorization
theorem in Rademacher and Toeplitz [17, p. 200].

Information-Theoretic Incompleteness 121

is in T only if it is true, then at most He(T) + c theorems of this form

are in T .

Proof #2: Consider the following special-purpose computer C.
Given a program

k bitsz }| {
000 � � � 0001 p

T
x;

C does the following. First C reads the initial run of 0 bits and the 1 bit

at its end. The total number of bits read is k. Then C starts running

on Ue the remainder of its program, which begins with a minimal-size

program p
T
for enumerating T :

Ue(pT) = T; jp
T
j = He(T):

As C enumerates T , C counts the number of bits

� � He(T)

of p
T
that it has read. The moment that C has enumerated enough

theorems in the formal system T to �nd the values and positions of

� + 2k bits of
, C stops enumerating the theorems of the formal

system T . (Unread bits of p
T
are not actually included in the program

for C. Let p0
T
be the portion of p

T
that is actually read. Thus the �nal

value of � equals jp0
T
j and may actually be less than He(T) if not all

bits of the minimal-size program for enumerating T are needed.) Now

C knows �+ 2k bits of
. Next C determines the position n of the bit

of
 that it knows that is farthest from the decimal point. In other

words, C �nds the largest n in the �rst �+ 2k theorems of the form

\The nth bit of
 is 0/1."

in T , where � = jp0
T
j is the number of bits of p

T
that are read. Consider

the string

n
of the �rst n bits of
:

n
= �1�2�3 � � ��n:

From T , C has determined �
n
and �+ 2k � 1 other bits of

n
. To �ll

in the gaps, the remaining n � � � 2k bits of

n
are provided to C as

the remainder of its program, x, which is exactly n� �� 2k bits long.

122 Part I|Survey

(For C's program to be self-delimiting, it is crucial that at this point

C already knows exactly how long x is.) Now C knows the �rst n bits

of
, and it outputs them and halts:

C(

k bitsz }| {
000 � � � 0001 p0

T
x) =

n
:

Note that the size of C's program is

j
k bitsz }| {

000 � � � 0001 j+ jp0
T
j+ jxj = k + �+ (n� �� 2k):

This of course simpli�es as follows:

k + �+ (n � � � 2k) = n � k:

Hence

H
C
(

n
) � n� k:

We therefore have the following crucial inequality:5

n � c0 < H(

n
) � n� k + sim

C
:

Hence

k < c0 + sim
C
:

Taking

k = c0 + sim
C

we get a contradiction. Thus T cannot yield

�+ 2k = � + 2(c0 + sim
C
) � He(T) + 2(c0 + sim

C
)

bits of
. The theorem is proved with

c = 2(c0 + sim
C
):

Q.E.D.

5It is easy to see that there is a computer C0 such that

U (p) =
n =) C
0(p) = the �rst string x with H(x) > n.

Hence
H(
n) > n� simC0 = n� c

0
:

I.e.,
 is a Chaitin random real. For the details, see the chapter \Chaitin's Omega"
in Gardner [29], or the proof that
 is Chaitin random in [16].

Information-Theoretic Incompleteness 123

10. Diophantine Equations

Now let's convert Theorem C into an incompleteness theorem about

diophantine equations.6

We arithmetize
 in two diophantine equations: one polynomial,

the other exponential.
 can be obtained as the limit of a computable

sequence of rational numbers

l
:

 = lim
l!1

l
:

(Careful: in Section 9,

l
meant something else.) For example, let

l

be the sum of 2�jpj taken over all programs p of size � l that halt in
time � l:

l
=

X
jpj � l

U(p) halts in time � l

2�jpj:

The methods of Jones and Matijasevi�c [10, 22, 31] enable one to

construct the following:

1. A diophantine equation

P (k; l; x1; x2; x3; : : :) = 0

that has one or more solutions if the kth bit of

l
is a 1, and that

has no solutions if the kth bit of

l
is a 0.

2. An exponential diophantine equation

L(k; l; x2; x3; : : :) = R(k; l; x2; x3; : : :)

that has exactly one solution if the kth bit of

l
is a 1, and that

has no solutions if the kth bit of

l
is a 0.

Since in the limit of large l the kth bit of

l
becomes and remains

correct, i.e., identical with the kth bit of
, it follows immediately

that:

6My �rst information-theoretic incompleteness theorem about diophantine equa-
tions is stated without proof in the introduction of my 1974 paper [4]. A better one
is mentioned in my 1982 paper [9, Section 4]. Finally, two papers [11, 12] and a
book [16] give number theory their undivided attention.

124 Part I|Survey

1. There are in�nitely many values of l for which the diophantine

equation

P (k; l; x1; x2; x3; : : :) = 0

has a solution i� the kth bit of
 is a 1.

2. The exponential diophantine equation

L(k; x1; x2; x3; : : :) = R(k; x1; x2; x3; : : :)

has in�nitely many solutions i� the kth bit of
 is a 1.

Consider the following questions:

1. For a given value of k, are there in�nitely many values of l for
which the diophantine equation

P (k; l; x1; x2; x3; : : :) = 0

has a solution?

2. For a given value of k, does the exponential diophantine equation

L(k; x1; x2; x3; : : :) = R(k; x1; x2; x3; : : :)

have in�nitely many solutions?

By Theorem C, to answer any n cases of the �rst question or any n
cases of the second question requires a formal system of e-complexity

> n� c.
For discussions of the signi�cance of these information-theoretic in-

completeness theorems, see [13, 15, 18{21, 23{30].

References

[1] G. J. Chaitin, \Computational complexity and G�odel's incom-

pleteness theorem," AMS Notices 17 (1970), 672.

[2] G. J. Chaitin, \Computational complexity and G�odel's incom-

pleteness theorem," ACM SIGACT News 9 (1971), 11{12.

Information-Theoretic Incompleteness 125

[3] G. J. Chaitin, \Information-theoretic computational complex-

ity," IEEE Transactions on Information Theory IT{20 (1974),

10{15.

[4] G. J. Chaitin, \Information-theoretic limitations of formal sys-

tems," Journal of the ACM 21 (1974), 403{424.

[5] G. J. Chaitin, \Randomness and mathematical proof," Scien-

ti�c American 232:5 (1975), 47{52.

[6] G. J. Chaitin, \A theory of program size formally identical to

information theory," Journal of the ACM 22 (1975), 329{340.

[7] G. J. Chaitin, \Algorithmic entropy of sets," Computers &

Mathematics with Applications 2 (1976), 233{245.

[8] G. J. Chaitin, \Algorithmic information theory," IBM Journal

of Research and Development 21 (1977), 350{359, 496.

[9] G. J. Chaitin, \G�odel's theorem and information," Interna-

tional Journal of Theoretical Physics 22 (1982), 941{954.

[10] J. P. Jones and Y. V. Matijasevi�c, \Register machine proof

of the theorem on exponential diophantine representation of enu-

merable sets," Journal of Symbolic Logic 49 (1984), 818{829.

[11] G. J. Chaitin, \Randomness and G�odel's theorem,"Mondes en

D�eveloppement 54{55 (1986), 125{128.

[12] G. J. Chaitin, \Incompleteness theorems for random reals,"

Advances in Applied Mathematics 8 (1987), 119{146.

[13] G. J. Chaitin, \Randomness in arithmetic," Scienti�c Ameri-

can 259:1 (1988), 80{85.

[14] G. J. Chaitin, Information, Randomness & Incompleteness|

Papers on Algorithmic Information Theory, 2nd Edition, Singa-

pore: World Scienti�c (1990).

126 Part I|Survey

[15] G. J. Chaitin, \Undecidability and randomness in pure math-

ematics," (transcript of a lecture delivered 28 September 1989 at

a Solvay conference in Brussels), in [14, pp. 307{313].

[16] G. J. Chaitin, Algorithmic Information Theory, 3rd Printing,

Cambridge: Cambridge University Press (1990).

[17] H. Rademacher and O. Toeplitz, The Enjoyment of Mathe-

matics, New York: Dover (1990).

[18] G. J. Chaitin, \A random walk in arithmetic," New Scientist

125:1709 (1990), 44{46. Reprinted in N. Hall, The New Scien-

tist Guide to Chaos, Harmondsworth: Penguin (1991).

[19] J. L. Casti, Searching for Certainty, New York: Morrow (1990).

[20] G. J. Chaitin, \Number and randomness," (transcript of a lec-

ture delivered 15 January 1991 at the Technical University of

Vienna). In M. E. Carvallo, Nature, Cognition and System,

Vol. 3, Dordrecht: Kluwer (1992), in press.

[21] G. J. Chaitin, \Le hasard des nombres," La Recherche 22:232
(1991), 610{615.

[22] J. P. Jones and Y. V. Matijasevi�c, \Proof of the recursive

unsolvability of Hilbert's tenth problem," American Mathematical

Monthly 98 (1991), 689{709.

[23] D. Ruelle, Chance and Chaos, Princeton: Princeton University

Press (1991).

[24] D. Ruelle, Hasard et Chaos, Paris: Odile Jacob (1991).

[25] L. Brisson and F. W. Meyerstein, Inventer L'Univers, Paris:

Les Belles Lettres (1991).

[26] J. A. Paulos, Beyond Numeracy, New York: Knopf (1991).

[27] J. D. Barrow, Theories of Everything, Oxford: Clarendon

Press (1991).

Information-Theoretic Incompleteness 127

[28] T. N�rretranders, M�rk Verden, Denmark: Gyldendal

(1991).

[29] M. Gardner, Fractal Music, Hypercards and More: : : , New

York: Freeman (1992).

[30] P. Davies, The Mind of God, New York: Simon & Schuster

(1992).

[31] C. Smory�nski, Logical Number Theory I, Berlin: Springer-

Verlag (1991).

128 Part I|Survey

Part II

Non-Technical Discussions

129

131

\A mathematical theory is not to be considered complete until you
have made it so clear that you can explain it to the �rst man whom
you meet on the street."

\This conviction of the solvability of every mathematical problem is
a powerful incentive to the worker. We hear within us the perpetual
call: There is the problem. Seek its solution. You can �nd it by pure
reason, for in mathematics there is no ignorabimus [we shall never
know]."

|David Hilbert,

International Congress of Mathematicians,
Paris, 1900

\Wir m�ussen wissen! Wir werden wissen!"
[We must know! We will know!]

|David Hilbert,

Naturerkennen und Logik,

K�onigsberg, 1930

\One does not immediately associate with Hilbert's name any de�nite
and important metamathematical result. Nevertheless, Hilbert will
deservedly be called the father of metamathematics. For he is the one
who created metamathematics as an independent being; he fought for
its right to existence, backing it with his whole authority as a great
mathematician. And he was the one who mapped out its future course
and entrusted it with ambitions and important tasks."

|Alfred Tarski in
Constance Reid, Hilbert

132 Part II|Discussion

ARENA PROGRAM ON

`NUMBERS' (BBC TV)

Produced by Fisher Dilke

Finished 19 April 1989

Broadcast Friday 19 January 1990

CHAITIN

Most people think that a computer is absolutely mechanical, reliable|

it goes from step to step in a completely mechanical fashion. This

may seem like a very surprising place to come up with unpredictability

and randomness. Computers to be useful have to be as predictable, as

unrandom, as possible.

There's an absolutely fundamental famous problem called the halt-

ing problem. The problem is to decide whether a computer program

will ever halt.

Most people don't understand why this is a problem at �rst. If you

take a computer program and you put it into a computer, and it halts,

you know it's halted. If you want to decide if a program will halt in an

hour, you run it for an hour, and it's either halted or it hasn't. If you

want to decide whether it halts in a day, you run it for a day, and it

either halts or it doesn't.

What turns out to be a tremendously fundamental conceptual

problem|and this has been known since the 30's|is to decide if a

133

134 Part II|Discussion

program will ever halt, where there's no limit on the time it takes.

Of course if a program does halt eventually, if we're very very patient

we can �nd that out, by just running it. Maybe in a million years or in

a billion years (I'm speaking now as a mathematician|this is all rather

theoretical) we'll see that it halted.

What turns out to be the absolutely fundamental problem is to

decide that a program that doesn't halt will never do it.

And then, instead of asking whether or not a program halts, you

ask what is the probability that a program chosen at random will halt.

That's when you get complete randomness. That's when I've shown

you get complete absolute randomness, unpredictability and incompre-

hensibility.

DILKE

Is this in the ordinary arithmetic that people learn at school?

CHAITIN

That's a very good question.

Clearly, there's nothing more certain than the fact that two plus

two is equal to four. I'm not saying that sometimes it will come out

�ve and sometimes it's going to come out three. I'm only dealing with

the whole numbers. Questions like this are clearly very easy to settle.

This is probably the most solid and concrete part of mathematics.

Instead the �rst step is to mirror the halting problem. The same

way that one asks whether or not a program ever halts, one can look at

equations involving whole numbers and ask whether or not they have

a solution.

That's the �rst step. That's a more abstract question.

If there is a solution for an equation, one can eventually discover

that, by experimenting and trying di�erent possibilities for the solution.

The problem is to prove that there is no solution. That's equivalent

to the halting problem, and escapes the power of mathematics in some

cases.

But it doesn't give complete randomness.

ARENA Program on `Numbers' 135

What I've done is to go to a slightly more abstract question. That

question is, to ask about an equation involving whole numbers, not

whether or not it has a solution, but does it have an in�nity of solutions

or only a �nite number of solutions (and no solution is a �nite number

of solutions).

If you construct the equations in the right way, and then you ask

whether the number of solutions is �nite or in�nite, I can show that

you get complete randomness. You get something that is completely

incomprehensible, that is completely unpredictable, and that no mat-

ter how much cleverness a mathematician will apply, will forever be

incomprehensible and show absolutely no pattern or structure.

Since this is rather unbelievable, I thought that it was important to

actually write the equations down and show them to people, to make

this randomness as tangible as possible. These equations turn out to

be enormous. In fact the �rst one is two hundred pages long. I had to

use a computer to write it out.

DILKE

So this calls for pessimism?

CHAITIN

No, I think it's wonderful! Who would have thought that the whole

numbers had it in them to behave in this fascinating, rich, unexpected

fashion! Who knows what else they're capable of doing! I think this is

very exciting.

136 Part II|Discussion

A RANDOM WALK IN

ARITHMETIC

New Scientist 125, No. 1709 (24 March 1990), pp. 44{46.
Reprinted in N. Hall, The New Scientist Guide to Chaos, Pen-
guin, 1991.

Gregory Chaitin

God not only plays dice in physics but also in pure mathematics. Math-

ematical truth is sometimes nothing more than a perfect coin toss.

THE NOTION of randomness obsesses physicists today. To what ex-

tent can we predict the future? Does it depend on our own limitations?

Or is it in principle impossible to predict the future? The question of

predictability has a long history in physics. In the early 19th century,

the classical deterministic laws of Isaac Newton led Pierre Simon de

Laplace to believe that the future of the Universe could be determined

Copyright c
 1990, IPC Magazines New Scientist, reprinted by permission.

137

138 Part II|Discussion

forever.

Then quantum mechanics came along. This is the theory that is

fundamental to our understanding of the nature of matter. It describes

very small objects, such as electrons and other fundamental particles.

One of the controversial features of quantum mechanics was that it in-

troduced probability and randomness at a fundamental level to physics.

This greatly upset the great physicist Albert Einstein, who said that

God did not play dice.

Then surprisingly, the modern study of nonlinear dynamics showed

us that even the classical physics of Newton had randomness and un-

predictability at its core. The theory of chaos, as the series of articles

in New Scientist last year described, has revealed how the notion of

randomness and unpredictability is beginning to look like a unifying

principle.

It seems that the same principle even extends to mathematics. I

can show that there are theorems connected with number theory that

cannot be proved because when we ask the appropriate questions, we

obtain results that are equivalent to the random toss of a coin.

My results would have shocked many 19th-century mathematicians,

who believed that mathematical truths could always be proved. For

example, in 1900, the mathematician, David Hilbert, gave a famous

lecture in which he proposed a list of 23 problems as a challenge to

the new century. His sixth problem had to do with establishing the

fundamental universal truths, or axioms, of physics. One of the points

in this question concerned probability theory. To Hilbert, probability

was simply a practical tool that came from physics; it helped to describe

the real world when there was only a limited amount of information

available.

Another question he discussed was his tenth problem, which was

connected with solving so-called \diophantine" equations, named after

the Greek mathematician Diophantus. These are algebraic equations

involving only whole numbers, or integers. Hilbert asked: \Is there a

way of deciding whether or not an algebraic equation has a solution in

whole numbers?"

Little did Hilbert imagine that these two questions are subtly re-

lated. This was because Hilbert had assumed something that was so

basic to his thinking that he did not even formulate it as a question in

A Random Walk in Arithmetic 139

his talk. That was the idea that every mathematical problem has a so-

lution. We may not be bright enough or we may not have worked long

enough on the problem but, in principle, it should be possible to solve

it|or so Hilbert thought. For him, it was a black or white situation.

It seems now that Hilbert was on shaky ground. In fact, there is

a connection between Hilbert's sixth question dealing with probability

theory and his tenth problem of solving algebraic equations in whole

numbers that leads to a surprising and rather chilling result. That is:

randomness lurks at the heart of that most traditional branch of pure

mathematics, number theory.

Clear, simple mathematical questions do not always have clear an-

swers. In elementary number theory, questions involving diophantine

equations can give answers that are completely random and look grey,

rather than black or white. The answer is random because the only

way to prove it is to postulate each answer as an additional indepen-

dent axiom. Einstein would be horri�ed to discover that not only does

God play dice in quantum and classical physics but also in pure math-

ematics.

Where does this surprising conclusion come from? We have to go

back to Hilbert. He said that when you set up a formal system of

axioms there should be a mechanical procedure to decide whether a

mathematical proof is correct or not, and the axioms should be con-

sistent and complete. If the system of axioms is consistent, it means

that you cannot prove both a result and its contrary. If the system is

complete, then you can also prove any assertion to be true or false. It

follows that a mechanical procedure would ensure that all mathematical

assertions can be decided mechanically.

There is a colourful way to explain how this mechanical procedure

works: the so-called \British Museum algorithm." What you do|it

cannot be done in practice because it would take forever|is to use

the axiom system, set in the formal language of mathematics, to run

through all possible proofs, in order of their size and lexicographic order.

You check which proofs are correct|which ones follow the rules and

are accepted as valid. In principle, if the set of axioms is consistent and

complete, you can decide whether any theorem is true or false. Such

a procedure means that a mathematician no longer needs ingenuity or

inspiration to prove theorems. Mathematics becomes mechanical.

140 Part II|Discussion

Of course, mathematics is not like that. Kurt G�odel, the Austrian

logician, and Alan Turing, the father of the computer, showed that it is

impossible to obtain both a consistent and complete axiomatic theory

of mathematics and a mechanical procedure for deciding whether an

arbitrary mathematical assertion is true or false, or is provable or not.

G�odel was the �rst to devise the ingenious proof, couched in number

theory, of what is called the incompleteness theorem (see \The incom-

pleteness of arithmetic," New Scientist, 5 November 1987). But I think

that the Turing version of the theorem is more fundamental and easier

to understand. Turing used the language of the computer|the instruc-

tions, or program, that a computer needs to work out problems. He

showed that there is no mechanical procedure for deciding whether an

arbitrary program will ever �nish its computation and halt.

To show that the so-called halting problem can never be solved, we

set the program running on a Turing machine, which is a mathematical

idealisation of a digital computer with no time limit. (The program

must be self-contained with all its data wrapped up inside the program.)

Then we simply ask: \Will the program go on forever, or at some point

will it say `I'm �nished' and halt?"

Turing showed that there is no set of instructions that you can give

the computer, no algorithm, that will decide if a program will ever halt.

G�odel's incompleteness theorem follows immediately because if there is

no mechanical procedure for deciding the halting problem, then there is

no complete set of underlying axioms either. If there were, they would

provide a mechanical procedure for running through all possible proofs

to show whether programs halt|although it would take a long time,

of course.

To obtain my result about randomness in mathematics, I simply

take Turing's result and just change the wording. What I get is a sort

of a mathematical pun. Although the halting problem is unsolvable,

we can look at the probability of whether a randomly chosen program

will halt. We start with a thought experiment using a general purpose

computer that, given enough time, can do the work of any computer|

the universal Turing machine.

Instead of asking whether or not a speci�c program halts, we look

at the ensemble of all possible computer programs. We assign to each

computer program a probability that it will be chosen. Each bit of

A Random Walk in Arithmetic 141

information in the random program is chosen by tossing a coin, an

independent toss for each bit, so that a program containing so many

bits of information, say, N bits, will have a probability of 2�N . We

can now ask what is the total probability that those programs will

halt. This halting probability, call it
, wraps up Turing's question

of whether a program halts into one number between 0 and 1. If the

program never halts,
 is 0; if it always halts,
 is 1.

In the same way that computers express numbers in binary notation,

we can describe
 in terms of a string of 1s and 0s. Can we determine

whether the Nth bit in the string is a 0 or a 1? In other words, can

we compute
? Not at all. In fact, I can show that the sequence of 0s

and 1s is random using what is called algorithmic information theory.

This theory ascribes a degree of order in a set of information or data

according to whether there is an algorithm that will compress the data

into a briefer form.

For example, a regular string of 1s and 0s describing some data such

as 0101010101 ... which continues for 1000 digits can be encapsulated

in a shorter instruction \repeat 01 500 times." A completely random

string of digits cannot be reduced to a shorter program at all. It is said

to be algorithmically incompressible.

My analysis shows that the halting probability is algorithmically

random. It cannot be compressed into a shorter program. To get N
bits of the number out of a computer, you need to put in a program at

least N bits long. Each of the N bits of
 is an irreducible independent

mathematical fact, as random as tossing a coin. For example, there are

as many 0s in
 as 1s. And knowing all the even bits does not help us

to know any of the odd bits.

My result that the halting probability is random corresponds to Tur-

ing's assertion that the halting problem is undecidable. It has turned

out to provide a good way to give an example of randomness in number

theory, the bedrock of mathematics. The key was a dramatic develop-

ment about �ve years ago. James Jones of the University of Calgary in

Canada and Yuri Matijasevi�c of the Steklov Institute of Mathematics in

Leningrad discovered a theorem proved by Edouard Lucas in France a

century ago. The theorem provides a particularly natural way to trans-

late a universal Turing machine into a universal diophantine equation

that is equivalent to a general purpose computer.

142 Part II|Discussion

I thought it would be fun to write it down. So with the help of a

large computer I wrote down a universal-Turing-machine equation. It

had 17 000 variables and went on for 200 pages.

The equation is of a type that is referred to as \exponential diophan-

tine." All the variables and constants in it are non-negative integers,

0, 1, 2, 3, 4, 5, and so on. It is called \exponential" because it contains

numbers raised to an integer power. In normal diophantine equations

the power has to be a constant. In this equation, the power can be a

variable. So in addition to having X3, it also contains XY .

To convert the assertion that the halting probability
 is random

into an assertion about the randomness of solutions in arithmetic, I need

only to make a few minor changes in this 200-page universal-Turing-

machine diophantine equation. The result, my equation exhibiting ran-

domness, is also 200 pages long. The equation has a single parameter,

the variable N . For any particular value of this parameter, I ask the

question: \Does my equation have a �nite or in�nite number of whole-

number solutions?" Answering this question turns out to be equivalent

to calculating the halting probability. The answer \encodes" in arith-

metical language whether the Nth bit of
 is a 0 or a 1. If the Nth bit

of
 is a 0, then my equation for that particular value of N has a �nite

number of solutions. If the Nth bit of the halting probability
 is a

1, then this equation for that value of the parameter N has an in�nite

number of solutions. Just as the Nth bit of
 is random|an inde-

pendent, irreducible fact like tossing a coin|so is deciding whether the

number of solutions of my equation is �nite or in�nite. We can never

know.

To �nd out whether the number of solutions is �nite or in�nite in

particular cases, say, for k values of the parameter N , we would have to

postulate the k answers as k additional independent axioms. We would

have to put in k bits of information into our system of axioms, so we

would be no further forward. This is another way of saying that the k
bits of information are irreducible mathematical facts.

I have found an extreme form of randomness, of irreducibility, in

pure mathematics|in a part of elementary number theory associated

with the name of Diophantus and which goes back 2000 years to classi-

cal Greek mathematics. Hilbert believed that mathematical truth was

black or white, that something was either true or false. I think that my

A Random Walk in Arithmetic 143

work makes things look grey, and that mathematicians are joining the

company of their theoretical physics colleagues. I do not think that this

is necessarily bad. We have seen that in classical and quantum physics,

randomness and unpredictability are fundamental. I believe that these

concepts are also found at the very heart of pure mathematics.

Gregory Chaitin is a member of the theoretical physics group

at the Thomas J. Watson Research Center in Yorktown Heights, New

York, which is part of IBM's research division.

Further Reading G. J. Chaitin, Information, Randomness & In-

completeness, Second Edition, World Scienti�c, Singapore, 1990; G. J.

Chaitin, Algorithmic Information Theory, third printing, Cambridge

University Press, Cambridge, 1990.

144 Part II|Discussion

NUMBER AND

RANDOMNESS

Algorithmic Information

Theory|

Latest Results on the

Foundations of Mathematics

In M. E. Carvallo, Nature, Cognition and

System, Vol. 3, Kluwer, 1993

Gregory J. Chaitin

IBM Research Division, New York

Lecture given Tuesday 15 January 1991 in the Technical University

of Vienna, at a meeting on \Mathematik und Weltbild," immediately

following a lecture by Prof. Hans-Christian Reichel on \Mathematik

Copyright c
 1993, Kluwer Academic Publishers, Dordrecht, The Netherlands,

reprinted by permission.

145

146 Part II|Discussion

und Weltbild seit Kurt G�odel." The lecture was videotaped; this is an

edited transcript.

It is a great pleasure for me to be speaking today here in Vienna. It's

a particularly great pleasure for me to be here because Vienna is where

the great work of G�odel and Boltzmann was done, and their work is

a necessary prerequisite for my own ideas. Of course the connection

with G�odel was explained in Prof. Reichel's beautiful lecture. What

may be a bit of a surprise is the name of Boltzmann. So let me talk

a little bit about Boltzmann and the connection with my own work on

randomness in mathematics.

You see, randomness in mathematics sounds impossible. If any-

thing, mathematics is where there is least randomness, where there is

most certainty and order and pattern and structure in ideas. Well, if

you go back to Boltzmann's work, Boltzmann also put together two con-

cepts which seem contradictory and invented an important new �eld,

statistical mechanics.

I remember as a student reading those two words \statistical me-

chanics," and thinking how is it possible|aren't these contradictory

notions? Something mechanical is like a machine, predictable. What

does statistics have to do with mechanics? These seem to be two widely

separate ideas. Of course it took great intellectual courage on Boltz-

mann's part to apply statistical methods in mechanics, which he did

with enormous success.

Statistical mechanics now is a fundamental part of physics. One

forgets how controversial Boltzmann's ideas were when they were �rst

proposed, and how courageous and imaginative he was. Boltzmann's

work in many ways is closely connected to my work and to G�odel's

work, which may be a little surprising.

I'm trying to understand G�odel's great incompleteness theorem, I'm

obsessed with that. I believe that the full meaning of G�odel's result can

be obtained by taking Boltzmann's ideas and applying them to mathe-

matics and to mathematical logic. In other words, I propose a thermo-

dynamical approach, a statistical-mechanics approach, to understand-

Number and Randomness 147

ing the foundations of mathematics, to understanding the limitations

and possibilities of mathematical reasoning.

Thermodynamics and statistical mechanics talk about what can

be accomplished by machines, by heat engines, by steam engines, by

physical systems. My approach to understanding the full implications

of G�odel's work is mathematically analogous to the ideas of thermo-

dynamics and Boltzmann and statistical mechanics. You might say,

not completely seriously, that what I'm proposing is \thermodynami-

cal epistemology!"

What led me to all this? Well, I was absolutely fascinated by G�odel's

theorem. It seemed to me that this had to be the most profound re-

sult, the most mysterious result, in mathematics. And I think that a

key question that one should ask when one reads G�odel's enormously

surprising result, is, well, how seriously should one take it?! It's clearly

an enormously startling and unexpected result, but consider the math-

ematician working on normal mathematical questions. What is the

meaning of G�odel for daily work in mathematics? That's the question

I'd like to ask.

G�odel explicitly constructed an arithmetical assertion that is true

but not provable within the system of Principia Mathematica of Russell

and Whitehead. It's a very strange assertion. It's an enormously clever

assertion: It says of itself, \I'm unprovable!" This is not the kind of

assertion that one normally is interested in as a working mathemati-

cian. But of course a great part of G�odel's genius was to take such a

bizarre question very seriously and also to clothe it as an arithmetical

question. With the years this has led to the work on Hilbert's tenth

problem, which is an even more straight-forward arithmetical incom-

pleteness result inspired by G�odel's fundamental path-breaking work.

Let me make my question more explicit. There are many problems

in the theory of numbers that are very simple to state. Are there an

in�nity of twin primes, primes that are two odd numbers separated

by one even number? That question goes back a long way. A question

which goes back to the ancient Greeks is, are there in�nitely many even

148 Part II|Discussion

perfect numbers, and are there any odd perfect numbers?

Is it possible that the reason that these results have not been proven

is because they are unprovable from the usual axioms? Is the signi�-

cance of G�odel's incompleteness theorem that these results, which no

mathematician has been able to prove, but which they believe in, should

be taken as new axioms? In other words, how pervasive, how common,

is the incompleteness phenomenon?

If I have a mathematical conjecture or hypothesis, and I work for a

week unsuccessfully trying to prove it, I certainly do not have the right

to say, \Well obviously, invoking G�odel's incompleteness theorem, it's

not my fault: Normal mathematical reasoning cannot prove this|we

must add it as a new axiom!" This extreme clearly is not justi�ed.

When G�odel produced his great work, many important mathemati-

cians like Hermann Weyl and John von Neumann took it as a personal

blow. Their faith in mathematical reasoning was severely questioned.

Hermann Weyl said it had a negative e�ect on his enthusiasm for do-

ing mathematics. Of course it takes enormous enthusiasm to do good

research, because it's so di�cult. With time, however, people have

gone to the other extreme, saying that in practice incompleteness has

nothing to do with normal, every-day mathematics.

So I think it's a very serious question to ask, \How common is

incompleteness and unprovability?" Is it a very bizarre pathological

case, or is it pervasive and quite common? Because if it is, perhaps we

should be doing mathematics quite di�erently.

One extreme would be experimental number theory, to do number

theory as if it were physics, where one looks for conjectures by playing

with prime numbers with a computer. For example, a physicist would

say that the Riemann � hypothesis is amply justi�ed by experiment,

because many calculations have been done, and none contradicts it.

It has to do with where the zeros of a function called the Riemann �

function are. Up to now all the zeros are where Riemann said they

were, on a certain line in the complex plane.

This conjecture has rich consequences. It explains a lot of empiri-

cally veri�ed properties of the distribution of prime numbers. So it's a

very useful conjecture. Now in physics, to go from Newtonian physics

to relativity theory, to go from relativity theory to quantum mechanics,

one adds new axioms. One needs new axioms to understand new �elds

Number and Randomness 149

of human experience.

In mathematics one doesn't normally think of doing this. But a

physicist would say that the Riemann hypothesis should be taken as a

new axiom because it's so rich and fertile in consequences. Of course, a

physicist has to be prepared to throw away a theory and say that even

though it looked good, in fact it's contradicted by further experience.

Mathematicians don't like to be put in that position.

These are very di�cult questions: How should one do mathemat-

ics? Should number theory be considered an experimental science like

physics? Or should we forget about G�odel's result in our everyday work

as mathematicians? There are many possibilities in this spectrum.

I think these are very di�cult questions. I think it will take many

years and many people to understand this fully. But let me tell you my

tentative conclusion based on my \thermodynamical" approach. It's

really an information-theoretic approach: The work of Boltzmann on

statistical mechanics is closely connected intellectually with the work of

Shannon on information theory and with my own work on algorithmic

information theory. There's a clear evolutionary history connecting

these ideas.

My approach is to measure how much information there is in a set

of axioms, to measure how much information there is in a theorem. In

certain circumstances I can show that if you have �ve pounds of axioms,

only �ve pounds, but here is a ten-pound theorem, well this theorem is

too big, it weighs too much to get from only �ve pounds of axioms.

Of course, I actually use an information-theoretic measure related

to the Boltzmann entropy concept. Boltzmann would recognize some

of the formulas in my papers, amazingly enough, because the interpre-

tation is quite di�erent: it involves computers and program size. But

some of the formulas are identical. In fact, I like to use H for the same

reason that Shannon used H, in honor of the Boltzmann H function,

the H function dear to the heart of statistical physicists. (Of course,

there's also a Hamiltonian H function, which is something else.)

The incompleteness phenomenon that G�odel discovered seems very

150 Part II|Discussion

natural from my information-theoretic point of view. You see, there is

no self-reference. G�odel's incredibly clever proof skirts very very close

to paradox. I was fascinated by it. I was also very disturbed by it as a

child when I started thinking about all this.

If one measures information, then it seems natural to think, that if

you want to get more information out, sometimes you have to put more

information in. A physicist would say that it's natural that if one wants

to encompass a wider range of mathematical experience, one needs to

add additional axioms. To a physicist that doesn't seem outrageous.

To a mathematician it's quite questionable and controversial.

So the point of view of algorithmic information theory suggests

that what G�odel found is not an isolated singularity. The information-

theoretic point of view suggests that G�odel's incompleteness phenome-

non is very natural, pervasive and widespread. If this is true, perhaps

we should be doing mathematics a little bit di�erently and a little bit

more like physics is done.

Physicists always seem very pleased when I say this, and mathe-

maticians don't seem at all pleased.

These are very di�cult questions. I'm proposing this point of view,

but by no means is it established. I think that one needs to study all

this a lot more.

In summary, let me tell a story from ten years ago, from 1979, which was

the centenary of Einstein's birth. There were many meetings around

the world celebrating this occasion. And at one of them in New York

I met a well-known physicist, John Wheeler. I went up to Wheeler

and I asked him, \Prof. Wheeler, do you think there's a connection be-

tween G�odel's incompleteness theorem and the Heisenberg uncertainty

principle?" Actually, I'd heard that he did, so I asked him, \What con-

nection do you think there is between G�odel's incompleteness theorem

and Heisenberg's uncertainty principle?"

This is what Wheeler answered. He said, \Well, one day I was at

the Institute for Advanced Study, and I went to G�odel's o�ce, and

there was G�odel..." I think Wheeler said that it was winter and G�odel

Number and Randomness 151

had an electric heater and had his legs wrapped in a blanket.

Wheeler said, \I went to G�odel, and I asked him, `Prof. G�odel,

what connection do you see between your incompleteness theorem and

Heisenberg's uncertainty principle?' " I believe that Wheeler exagger-

ated a little bit now. He said, \And G�odel got angry and threw me

out of his o�ce!" Wheeler blamed Einstein for this. He said that Ein-

stein had brain-washed G�odel against quantum mechanics and against

Heisenberg's uncertainty principle!

In print I recently saw a for-the-record version of this anecdote,1

which probably is closer to the truth but is less dramatic. It said, not

that Wheeler was thrown out of G�odel's o�ce, but that G�odel simply

did not want to talk about it since he shared Einstein's disapproval of

quantum mechanics and uncertainty in physics. Wheeler and G�odel

then talked about other topics in the philosophy of physics, and about

cosmology.

There is some little-known work of G�odel connected with general

relativity, some very interesting work, about universes where the past

and the future is a loop, and you can travel into your past by going

around. That's called a G�odel universe. It's a little-known piece of

work that shows the stamp of G�odel's originality and profundity.

Okay, so what was the �nal conclusion of all this? I went up to

Wheeler at this Einstein centenary meeting, and I asked him this ques-

tion. Wheeler told me that he asked G�odel the same question, and

G�odel didn't answer Wheeler's question, and Wheeler never answered

my question! So I'm going to answer it!

I'll tell you what I think the connection really is between G�odel's

incompleteness theorem and Heisenberg's uncertainty principle. To an-

swer the question I want to make it a broader question. I would like

to tell you what I think the connection is between incompleteness and

physics.

I think that at the deepest level the implication of G�odel's incom-

pleteness theorem is as I said before that mathematics should be pur-

sued more in the spirit of physics, that that's the connection. I see

some negative reactions from the audience! Which doesn't surprise me!

1Jeremy Bernstein, Quantum Pro�les, Princeton University Press, 1991, pp. 140{
141.

152 Part II|Discussion

Of course this is a di�cult question and it's quite controversial. But

that's what my work using an information-theoretic approach to G�odel

suggests to me.

Number theory has in fact been pursued to a certain extent in the

spirit of an experimental science. One could almost imagine a journal

of experimental number theory. For example, there are papers pub-

lished by number theorists which are, mathematicians say, \modulo

the Riemann hypothesis." That is to say, they're taking the Riemann

hypothesis as an axiom, but instead of calling it a new axiom they're

calling it a hypothesis.

There are many examples of how this information-theoretic point of

view yields incompleteness results. I think the most interesting one is

my recent work on randomness in arithmetic, which I haven't really

referred to yet in my talk.

A fundamental question that many of us wonder about, especially

as teenagers|that's an age particularly well-suited for fundamental

questions|is the question, \To what extent can the universe be com-

prehended by the human mind?" Is the universe ordered? Is there

chaos and randomness? Are there limits in principle to what we will

ever be able to understand?

Hilbert stated very beautifully that he didn't believe that there were

limits to what the human mind could accomplish in mathematics. He

believed that every question could be resolved: either shown to be true

or false. We might not be able to ever do it, but he believed that in

principle it was possible. Any clear mathematical question would have

a clear resolution via a mathematical proof. Of course, G�odel showed

that this is not the case.

But it's really a more general question. Can the universe be compre-

hended, the physical universe as well as the universe of mathematical

experience? That's a broader question.

To what extent can all this be comprehended by the human mind?

We know that it cannot be completely comprehended because of G�odel's

work. But is there some way of getting a feeling for how much can be

Number and Randomness 153

comprehended? Again it boils down to that.

When I was a student at the university, I totally believed in sci-

ence. But my faith in science was tried by the work I had to do in

experimental physics laboratories. The experiments were di�cult. It

was hard for me to get good results. I'm sure some of you are excellent

experimentalists. There are people who have a natural talent for doing

physics experiments like there are people who have a natural talent for

growing
owers. But for me, the physics laboratory was a di�cult ex-

perience and I began to marvel that scientists had been able to create

modern science in spite of the fact that Nature does not give a clear

answer to questions that we ask in the laboratory. It's very di�cult to

get a clear answer from Nature as to how the world works.

So I asked myself, what is it that is the most convincing evidence, in

our normal daily experience, that the universe can be comprehended,

that there is law and order and predictability rather than chaos and ar-

bitrary things which cannot be predicted and cannot be comprehended?

In my experience I would say that what most convinces me in science

and predictability and the comprehensibility of the universe is, you'll

laugh, the computer!

I'm not referring now to the computer as an industrial gadget. I

think the computer is really amazing not because of its practical use-

fulness, but because of the fact that it works! To get a physical system

to behave so predictably over such long periods, over very extended

calculations, is amazing when one thinks about it.

I've done calculations which involved billions2 of successive opera-

tions each of which had to be accurately derived from the preceding

ones. Billions of steps each of which depended on the preceding ones.

I had ways of suspecting or predicting the �nal result or some char-

acteristic of it, and it worked! It's really rather amazing. Of course,

it doesn't always work, because the machine breaks down, or the pro-

grammer makes a mistake. But it works a lot of the time. And if one

runs a program several times one usually gets the same answers.

It's really amazing when one thinks how many steps the machine

is doing and how this chain of causal events is predictable and is un-

derstandable. That's the job of the computer engineer, to �nd physical

2 109

154 Part II|Discussion

principles that are as predictable as possible, that give him a physical

way to model the predictability of mathematics. Because computers

are actually mathematical machines, that is what they really are. At

least a mathematician might say that.

So the computer is a wonderful example of predictability and a

case where the physical behavior of a big chunk of the universe is very

understandable and very predictable and follows de�nite laws. I don't

know the detailed laws of how a transistor works. But the overall

behavior of the system is amazingly comprehensible and predictable.

Otherwise one would not use computers. They would be absolutely

useless.

Now it may seem strange that starting with the computer one can con-

struct what I believe to be a very dramatic example of randomness.

This is an idea I got from the work of Turing, which in turn was in-

spired by the work of G�odel, both of which of course were responses to

questions that Hilbert asked.

Turing asks, can one decide if a computer program will ever halt, if

it will ever stop running? Turing took Cantor's diagonal argument from

set theory and used it to show that there is no mechanical procedure

for deciding if a computer program will ever halt.

Well, if one makes a small change in this, in Turing's theorem that

the halting problem is undecidable, one gets my result that the halt-

ing probability is algorithmically random or irreducible mathematical

information. It's a mathematical pun!

The problem with this theorem is of course that in doing everyday

mathematics one does not worry about halting probabilities or halting

problems. So I had the same problem that G�odel had when he was

thinking about mathematical assertions which assert of themselves that

they're unprovable. My problem was how to take this bizarre notion of

a halting probability and convert it into an arithmetical assertion.

It turns out that one can do this: One can exhibit a way to toss

a coin with whole numbers, with the integers, which are the bedrock

of mathematics. I can show that in some areas of arithmetic there is

Number and Randomness 155

complete randomness!

Don't misunderstand. I was interviewed on a BBC TV program.

A lot of people in England think I said that 2 + 2 is sometimes 4,

sometimes 5, and sometimes 3, and they think it's very funny! When

I say that there is randomness in arithmetic I'm certainly not saying

that 2 + 2 is sometimes 3 and sometimes 5. It's not that kind of

randomness. That is where mathematics is as certain and as black and

white as possible, with none of the uncertainties of physics.

To get complete randomness takes two steps.

The �rst step was really taken by Turing and is equivalent to

Hilbert's tenth problem posed in 1900. One doesn't ask if 2 + 2 =

4 (we know the answer!). One asks if an algebraic equation involving

only whole numbers, integers, has a solution or not.

Matijasevi�c showed in 1970 that this problem, Hilbert's tenth prob-

lem, is equivalent to Turing's theorem that the halting problem is un-

decidable: Given a computer program one can construct a diophantine

equation, an algebraic equation in whole numbers, that has a solution

if and only if the given computer program halts. Conversely, given a

diophantine equation, an algebraic equation involving only whole num-

bers, one can construct a computer program that halts if and only if

the given diophantine equation has a solution.

This theorem was proven by Matijasevi�c in 1970, but intellectually

it can be traced directly back to the 1931 incompleteness theorem of

G�odel. There were a number of people involved in getting this dramatic

1970 result. It may be viewed as G�odel's original 1931 result restated

in much simpler arithmetical terms.

Unfortunately it turns out that this doesn't give complete random-

ness; it only gives partial randomness.

I'll now speak information-theoretically. Consider N cases of Hilb-

ert's tenth problem. You ask, does the equation have a solution or not

for N di�erent equations? The worst would be if that were N bits of

information, because each answer is independent. It turns out that it

is only order of log2N bits of information, because the answers are not

at all independent. That's very easy to see, but I can't go into it.

So what does one do to get completely independent mathematical

facts in elementary arithmetic? It's very simple. One goes a step

farther: Instead of taking the halting problem and making it into the

156 Part II|Discussion

question of whether a diophantine equation has a solution or not, one

takes my halting probability, and makes it into the question of whether

a diophantine equation has a �nite or an in�nite number of solutions.

If the equations are constructed properly, whether they have a �nite

or an in�nite number of solutions is completely random. In fact, a single

equation with a parameter will do. One takes the parameter to be 1, 2,

3, 4, 5, ... and one gets a series of derived equations from the original

equation by �xing the value of the parameter. For each of these derived

equations one asks: \Is there a �nite or an in�nite number of solutions?"

I can construct this equation in such a way that the answers to this

question are independent irreducible mathematical facts.

So that is how you use arithmetic to toss a coin, to give you ran-

domness.

By the way, this equation turns out to be about 200 pages long and

has 17,000 variables, and it's fun to calculate it. But one doesn't do it

by hand! One does it with a computer. A computer is essential to be

able to exhibit this equation.

It is an in�nite series of equations really, each of which has a di�erent

value of the parameter. We ask whether each of the equations has a

�nite or an in�nite number of solutions. Exactly what does it mean to

say that these are irreducible mathematical facts?

Well, how does one reduce mathematical facts? To axioms, to pos-

tulates! And the inverse of the reduction is to prove a theorem, I mean,

to expand axioms into theorems. The traditional notion of mathemat-

ics is that a small �nite set of axioms can give us all of mathematics,

all mathematical truths. That was the pre-G�odel notion that Hilbert

believed in.

So in a sense what we're doing is we're compressing a lot of mathe-

matical facts enormously, into a small set of axioms. Or actually, we're

expanding a �nite set of axioms into individual mathematical facts.

I'm asserting that I've constructed irreducible mathematical facts.

What does this mean? It means that you cannot shrink them any more,

you cannot squeeze them into axioms. In fact, that these are irreducible

Number and Randomness 157

mathematical assertions means that essentially the only way to prove

them is if we directly take each individual assertion that we wish to

prove as an axiom! That's cheating!

Yes, one can always prove an assertion by putting the assertion

itself as a new axiom, but then we're not using reasoning. Picking new

axioms is not deduction; it's the kind of thing that physicists worry

about.

It is surprising that we can have an in�nite number of independent

mathematical facts that can only be proven by taking them as axioms.

But if we think about coin tossing this is not at all surprising. You see,

the notion of independent coin tosses is exactly like that.

Each time one tosses a fair coin, whether the outcome of that partic-

ular toss is head or tails, tells us absolutely nothing about the outcome

of any future toss, and absolutely nothing about the outcome of any

previous toss. That's how casinos make money: There is no way to

predict from what has happened at a roulette wheel what is going to

happen. Well, there is if the roulette wheel isn't balanced, and of course

the casino works hard to make sure that the roulette wheel is working

properly.

Let's go back to coin tossing, to the notion that a series of tosses

has no structure. Even if one knew all the even results, it wouldn't help

us predict any of the odd results. Even if one knew the �rst thousand

tosses, that wouldn't help us predict the thousand-�rst toss.

Well, it's the same with using my equation to get randomness. Even

if somehow one were told for all the even cases, whether there are a �nite

or an in�nite number of solutions, this would be absolutely no help in

getting the odd cases. Even if one were told the �rst thousand cases,

whether there are a �nite or an in�nite number of solutions, it would

be no help in getting the thousand-�rst case.

In fact I don't see how one could ever get any of the cases. Because

there is absolutely no structure or pattern, and as I said these are

irreducible mathematical facts. Essentially the only way to prove them

is to directly assume them, which is not using reasoning at all.

158 Part II|Discussion

So we've gone a long way in less than a hundred years: From Hilbert's

conviction that every mathematical problem can be settled decisively

by mathematical reasoning, to G�odel's surprising discovery that any

�nite set of axioms for elementary arithmetic is incomplete, to a new

extreme, areas of arithmetic where reasoning is totally impotent and

totally irrelevant.

Some people were depressed by G�odel's result. You might say, \This

is all rather upsetting; should I switch �elds and stop studying mathe-

matics?" I certainly don't think you should!

You see, even though there is no pattern or structure in the question

of whether individual cases of my equation have a �nite or an in�nite

number of solutions, one can deal with it statistically: It turns out that

in half the cases there's a �nite number of solutions, and in half the

cases there's an in�nite number of solutions.

It's exactly like coin tosses, independent fair coin tosses. One can

use statistical methods and prove theorems about the statistical pat-

terns and properties of the answers to the question, which cannot be

answered in each particular case, of whether there are a �nite or an

in�nite number of solutions.

Let me repeat that the answers have a very simple statistical struc-

ture, that of independent tosses of a fair coin. So half the cases are heads

and half are tails, one-fourth are a head followed by a head, one-fourth

a head followed by a tail, one-fourth tail-head, one-fourth tail-tail, and

so on for larger blocks and all the other statistical properties that one

would like.

This kind of situation is not new; it's happened before, in physics.

In quantummechanics the Schr�odinger equation shows this very clearly.

The Schr�odinger equation does not directly predict how a physical sys-

tem will behave. The Schr�odinger function is only a probability. We

can solve the Schr�odinger equation to determine the probability that a

physical system will behave in a certain way. The equation does not

tell us what the system will do, it tells us the probability that it will

do certain things.

In the 1920's and 1930's, this was very controversial, and Einstein

hated it. He said, \God doesn't play dice!" But as you all know and

Number and Randomness 159

as Prof. Reichel explained, in recent times this lack of predictability

has spread outside quantum mechanics. It turns out that even classical

physics, Newtonian physics, contains unpredictability and randomness.

This is the �eld of non-linear dynamics or \deterministic chaos."

It occurs in situations where small changes can produce big e�ects,

in non-linear situations, very unstable situations, like the weather. It

turns out that the weather is unpredictable, even in principle, as Prof.

Casti discusses in his forthcoming book.3 He studies the question of

predictability and comprehensibility in a very broad context, including

mathematics, the weather, and economics.

So it begins to look now like randomness is a unifying principle.

We not only see it in quantum mechanics and classical physics, but

even in pure mathematics, in elementary number theory. As I said

before, I don't think that this should be viewed pessimistically. What

it suggests to me, is that pure mathematics has much closer ties with

physics than one suspected. Perhaps Plato's universe of mathematical

ideas and the physical universe that we live in when we're not doing

mathematics, perhaps these are closer to each other than has hitherto

been suspected.

Thank you.

3John L. Casti, Searching for Certainty|What Scientists Can Know About the

Future, William Morrow, New York, 1991.

160 Part II|Discussion

RANDOMNESS IN

ARITHMETIC

In M. E. Carvallo, Nature, Cognition and

System, Vol. 3, Kluwer, 1993

G. J. Chaitin

Lecture given 16 January 1991 in the G�odel Room of the Mathematical

Institute of the University of Vienna.

History

� Hilbert: Math is consistent, complete and decidable?

� G�odel 1931: Math is incomplete!

� Turing 1936: Math is undecidable!

� G�odel's & Turing's results superseded by stronger result:

Copyright c
 1993, Kluwer Academic Publishers, Dordrecht, The Netherlands,

reprinted by permission.

161

162 Part II|Discussion

� Chaitin 1987: Math is random!

� Random?

� Answering Einstein, \God not only plays dice in physics, but even

with the whole numbers!"

How to toss a coin?

� Exponential diophantine equation E(~X;K) = 0

� 200 pages long!

� With 17,000 integer variables ~X!

� For K = 0, 1, 2, 3, ... we ask \Does E(K) = 0 have �nitely or

in�nitely many solutions ~X?"

� The answers cannot be distinguished from independent tosses of

a fair coin!

� The answers are irreducible mathematical information!

� The only way to prove them is to explicitly assume each of the an-

swers to these questions as a new mathematical axiom/postulate!

� Cheating!

Information theory

� Classical information theory:

H(p1; : : : ; pn) � �
P
p
i
log2 pi

� Algorithmic information theory:

H(X) � size in bits jP j of smallest program P for com-

puting X

� I.e.,

Randomness in Arithmetic 163

H(X) � min
C(P)=X jP j

� Choice of computer C used as measuring stick doesn't matter

very much.

� Programs P must be syntactically self-delimiting:

� No extension of a valid program is a valid program.

Undecidability of halting problem

(Turing 1936)

� Assume halting problem is decidable.

� Then log2N + c bit program can do following:

� Contains base-two numeral for N . (log2N bits)

� Remaining c bits:

� Consider each program P of size � N .

� Does P halt?

� If so, run P , and get largest integer printed.

� Maximize over all integers printed by programs that halt.

� Add one to result, print this, and halt.

� So log2N+c bit program prints integer greater than any program

up to size N can print.

� Eventually, log2N + c is much less than N .

� Contradiction!

164 Part II|Discussion

The halting probability

�
 � P program P halts 2
�jP j

�
 < 1 because no extension of a valid program is a valid program.

�
 is an algorithmically irreducible or random real number.

� I.e., to produce any N bits of base-two expansion of
 would take

an N -bit program.

� Implies statistical randomness.

� Thus, e.g.,
 is \absolutely normal" in sense of Borel.

� I.e., in any base, all blocks of digits of the same length have equal

limiting relative frequency.

\Computing"
 in the limit

�

N
� Nth approximation to halting probability

�

N
�P jP j�N & P halts in time �N 2�jP j

�

N
is computable function of N (slow!)

�
1 �
2 �
3 � � � � "

�

N
converges to
 very, very slowly!

Equation for

� Write pure lisp program for Kth bit of

N
� (Nth approxima-

tion to
).

� Only three pages long.

� Halts if Kth bit of

N
is 1.

� Doesn't halt if Kth bit of

N
is 0.

Randomness in Arithmetic 165

� Plug this lisp program into a 200-page universal exponential dio-

phantine equation.

� (A universal diophantine equation is one that \simulates" a uni-

versal Turing machine.)

� Resulting equation:

� has exactly one solution if Kth bit of

N
is 1;

� has no solution if Kth bit of

N
is 0.

� Since

N
"
, equation:

� has �nitely many solutions if Kth bit of
 is 0;

� has in�nitely many solutions if Kth bit of
 is 1.

Solvable/unsolvable?

� Hilbert's 10th problem:

� \Does a diophantine equation have a solution?"

� Hilbert's 10th problem is undecidable (Matijasevi�c 1970).

� Proof:

� P (~X;K) = 0 is solvable i� Kth program halts.

� \Is P (K) = 0 solvable/unsolvable?" (0 � K < N)

� Answers not independent.

� If know how many solvable, can determine which.

� So N answers are only O(logN) bits of information.

166 Part II|Discussion

Finitely/in�nitely many solutions?

� Now consider E(~X;K) = 0 with in�nitely many solutions i� Kth

bit of
 is 1.

� (Exponential diophantine equation E = 0 instead of polynomial

diophantine equation P = 0.)

� \Does E(K) = 0 have �nitely/in�nitely many solutions?" (0 �
K < N)

� Now N answers are essentially N bits of information.

� Answers independent!

� Irreducible mathematical information!

Universal diophantine equation

� Simulates universal Turing machine� general-purpose computer.

� Parameter of equation is program to execute.

� If program halts, equation has exactly one solution (\singlefold-

ness").

� If program doesn't halt, equation has no solution.

� Solutions to universal exponential diophantine equation are his-

tory vectors giving contents of each machine register as a function

of time.

� Each \digit" in very large base is current register contents.

Constructing the equation

� Program parameter is written in toy pure lisp.

Randomness in Arithmetic 167

� Solution of equation is computation of interpreter eval for toy

pure lisp.

� Very little number theory involved!

� Kth binomial coe�cient of order N is odd i� K) N bit by bit

in base-two (Lucas, late 19th century).

� \Kth digit of (11)N base 2N is odd" can be expressed as singlefold

exponential diophantine equation (Jones & Matijasevi�c 1984).

� Combine equations by using X = 0 & Y = 0 i� X2 + Y 2 = 0.

Toy pure LISP

� Pure functional language:

� Evaluate expressions, no side-e�ects.

� Data and function de�nitions are S-expressions:

� Character strings with balanced ()'s.

� Head of ((abc)de(fg(h))) is (abc)

� Tail of ((abc)de(fg(h))) is (de(fg(h)))

� Join of (abc) and (de(fg(h))) is ((abc)de(fg(h)))

� De�ne lisp functions recursively as in G�odel's 1931 paper.

LISP register machine

� Lisp S-expressions are character strings in machine registers.

� (Register machine, not Turing machine as in Turing's 1936 paper.)

� Register modulo 256 is �rst character of S-expression.

� Register/256 is remaining characters of S-expression.

168 Part II|Discussion

� Interpreter eval for toy pure lisp is 300 register machine instruc-

tions.

� Apply techniques of Jones & Matijasevi�c 1984.

� Eval expands into 200-page universal exponential diophantine

equation.

Summary

� Exponential diophantine equation E(~X;K) = 0

� 200 pages long!

� With 17,000 integer variables ~X!

� For K = 0, 1, 2, 3, ... we ask \Does E(K) = 0 have �nitely or

in�nitely many solutions ~X?"

� The answers cannot be distinguished from independent tosses of

a fair coin!

� The answers are irreducible mathematical information!

� The only way to prove them is to explicitly assume each of the an-

swers to these questions as a new mathematical axiom/postulate!

� Cheating!

References

� I. Stewart, \The ultimate in undecidability," Nature, 10 March

1988.

� J.P. Delahaye, \Une extension spectaculaire du th�eor�eme de

G�odel: l'�equation de Chaitin," La Recherche, juin 1988, AMS

Notices, October 1989.

Randomness in Arithmetic 169

� G.J. Chaitin, \Randomness in arithmetic," Scienti�c American,

July 1988.

� G.J. Chaitin, \A random walk in arithmetic," New Scientist, 24

March 1990.

� G.J. Chaitin, \Le hasard des nombres," La Recherche, mai 1991.

� G.J. Chaitin, Algorithmic Information Theory, third printing,

Cambridge University Press, England, 1990.

� G.J. Chaitin, Information, Randomness and Incompleteness|

Papers on Algorithmic Information Theory, second edition, W-

orld Scienti�c, Singapore, 1990.

170 Part II|Discussion

LE HASARD DES

NOMBRES

La Recherche 22, N� 232

(mai 1991), pp. 610{615

Gregory J. Chaitin

Les math�ematiques passent pour l'incarnation de la rigueur logique et

de l'exactitude. Peut-on n�eanmoins y d�eceler du d�esordre ? Dans les

ann�ees 1930, les travaux du logicien Kurt G�odel, en d�emontrant l'� in-

compl�etude� des math�ematiques, avaient d�ej�a �ebranl�e quelques solides

certitudes. Plus r�ecemment, G.J. Chaitin a propos�e une d�e�nition

du hasard faisant appel �a la th�eorie algorithmique de l'information.

Moyennant cette d�e�nition, l'auteur a pu montrer que certaines ques-

tions en th�eorie des nombres ont des r�eponses tout aussi al�eatoires que

le r�esultat d'un jeu de pile ou face. Les math�ematiques joueraient-elles

donc aux d�es ?

Copyright c
 1991, La Recherche, reprinted by permission.

171

172 Part II|Discussion

Le concept de hasard intrigue depuis longtemps les physiciens, et même

l'humanit�e en g�en�eral. Quelle est l'origine du hasard ? Dans quelle

mesure le futur peut-il être pr�edit ? Notre incapacit�e �a pr�edire l'avenir

est-elle la cons�equence de nos limites humaines ou plutôt la cons�equence

d'une impossibilit�e de principe ? Ces questions ont, en physique, une

longue histoire. La physique classique h�erit�ee d'Isaac Newton �etait

compl�etement d�eterministe : la connaissance parfaite de l'�etat d'un

syst�eme �a un instant donn�e permettait en principe la d�etermination

de son �etat �a tout instant ult�erieur. Puis vint au d�ebut de ce si�ecle

la m�ecanique quantique, o�u probabilit�es et hasard interviennent au

niveau le plus fondamental de la th�eorie ; en e�et, celle-ci ne peut

fournir que des probabilit�es de mesurer telle ou telle valeur de la po-

sition, de l'�energie, etc. La m�ecanique quantique introduisit donc une

ind�etermination fondamentale dans la nature, chose qu'Einstein lui-

même ne voulut jamais accepter, comme en t�emoigne son c�el�ebre �
Dieu ne joue pas aux d�es �. Puis, assez r�ecemment, on s'aper�cut avec

l'�etude des� syst�emes dynamiques�, qu'apr�es tout, la physique clas-

sique avait aussi du hasard, ou plus exactement de l'impr�evisibilit�e, en-

fouis en son sein, puisque certains syst�emes même tr�es simples, comme

un syst�eme de pendules, peuvent exhibir un comportement impr�evisible

(voir � Le chaos d�eterministe� dans La Recherche d'octubre 1990).

Le hasard, souvent associ�e au d�esordre, est ainsi devenu, du moins en

physique, une notion pleine de contenu.

Et en math�ematiques, discipline souvent per�cue comme la certitude

par excellence ? Le hasard y a-t-il une place ? La question est d�ej�a

un peu surprenante. La r�eponse l'est encore plus ! Di��erents travaux,

notamment les miens, ont montr�e que la situation en math�ematiques

est apparent�ee �a celle qui pr�evaut en physique : le hasard apparâ�t en

math�ematiques �a un niveau fondamental. Je ne fais pas ici allusion �a la

th�eorie des probabilit�es, qui fait partie int�egrante des math�ematiques et

qui est un outil pour d�ecrire et �etudier des ph�enom�enes al�eatoires, sans

se pr�eoccuper de l'origine de leur caract�ere al�eatoire. La probl�ematique

qui nous occupe ici est tout autre et, d'un certain point de vue, beau-

coup plus profonde : supposons que nous, math�ematiciens, n'arrivions

pas �a d�emontrer un th�eor�eme, que nous ne discernions pas une struc-

Le Hasard des Nombres 173

ture ou une loi portant sur des nombres ou d'autres entit�es (cela arrive

tr�es souvent, et même dans la plupart des cas !). Plusieurs questions

sont alors possibles : est-ce de notre faute, est-ce parce que nous ne

sommes pas assez astucieux, parce que nous n'avons pas assez travaill�e

? Ou bien est-ce plutôt parce qu'il n'y a pas de loi math�ematique �a

trouver, pas de th�eor�eme, pas de r�eponse �a la question math�ematique

que nous nous sommes pos�ee ? C'est en liaison avec cette derni�ere

question, comme nous le verrons, qu'apparaissent les th�emes du hasard

et de l'impr�evisibilit�e en math�ematiques.

Une fa�con d'orienter notre r�e
exion sur cette question est de nous

rappeler la c�el�ebre liste des vingt-trois probl�emes que le math�ematicien

allemand David Hilbert (�g. 1) avait propos�ee en 1900 en tant que

d�e� au XXe si�ecle naissant(1). L'un des probl�emes, le sixi�eme de la

liste, �etait d'axiomatiser la physique, c'est-�a-dire d'exprimer toutes les

lois fondamentales de la physique sous forme de r�egles math�ematiques

formelles ; cette question englobait l'axiomatisation de la th�eorie des

probabilit�es car, pour Hilbert, les probabilit�es concernaient le monde

r�eel et �etaient donc du ressort de la physique. Son dixi�eme probl�eme

avait rapport, lui, aux �equations � diophantiennes �, c'est-�a-dire les

�equations alg�ebriques o�u l'on cherche des solutions sous forme de nom-

bres entiers. La question pos�ee par Hilbert �etait : � Y a-t-il un moyen

de d�ecider si une �equation alg�ebrique poss�ede ou non une solution en

nombres entiers ? �. Hilbert �etait loin de soup�conner une quelconque

relation entre ces deux probl�emes, alors que nous verrons plus loin qu'il

y en a bel et bien une.

G�odel : il n'existe pas de syst�eme axioma-

tique complet et coh�erent qui puisse con-

tenir l'arithm�etique

Pour Hilbert et pour la plupart des math�ematiciens de l'�epoque, l'id�ee

que tout probl�ememath�ematique poss�ede une solution �etait un principe

qui allait de soi. Ce n'est que par la suite qu'Hilbert a reconnu qu'il

y avait l�a un th�eme �a explorer. De cette exploration, il s'est av�er�e

qu'une question math�ematique simple et claire ne poss�ede pas toujours

174 Part II|Discussion

de r�eponse tranch�ee ; de plus, une certaine forme de hasard intervient

même en math�ematiques pures, et se rencontre au travers des �equations

diophantiennes, objet du dixi�eme probl�eme de Hilbert. En e�et, nous

verrons que certaines questions assez simples d'arithm�etique, li�ees aux

�equations diophantiennes, ont | dans un sens bien d�etermin�e | une

r�eponse compl�etement al�eatoire. Et cela, non pas parce que nous ne

pourrons y r�epondre demain, dans cent ou mille ans, mais parce que la

r�eponse est al�eatoire quel que soit le raisonnement utilis�e.

Comment en est-on arriv�e l�a ? Un premier point a rapport avec

la notion de raisonnement axiomatique, c'est-�a-dire de raisonnement

math�ematique fond�e sur des r�egles formelles. Le syst�eme g�eom�etrique

d'Euclide est un exemple simple de syst�eme axiomatique, mais depuis

la �n du XIXe si�ecle divers syst�emes d'axiomes ont �et�e propos�es a�n

de formaliser compl�etement les math�ematiques ainsi que la logique sur

laquelle tout raisonnement humain repose. L'axiomatique et le fonde-

ment des math�ematiques ont �et�e �etudi�es par de nombreux chercheurs, y

compris par Hilbert lui-même. En particulier, ce dernier avait formul�e

une exigence : pour qu'un syst�eme d'axiomes soit satisfaisant, il doit ex-

ister une� proc�edure m�ecanique�, c'est-�a-dire une suite d'op�erations

logiques en nombre �ni, permettant de d�ecider si une d�emonstration

math�ematique quelconque v�eri�e ou non les r�egles formelles �x�ees.

C'est l�a une exigence de clart�e et d'objectivit�e, qui semble parfaite-

ment naturelle. Le point important pour la suite est que si l'on bâtit

un syst�eme d'axiomes coh�erent (c'est-�a-dire tel qu'on ne peut y prou-

ver un r�esultat et son contraire simultan�ement) et complet (c'est-�a-dire

tel que toute assertion y est soit vraie, soit fausse), alors il d�ecoule

imm�ediatement qu'il existe une proc�edure m�ecanique permettant | en

principe | de trancher toute question qui puisse être formul�ee dans le

cadre de cette th�eorie.

Une telle proc�edure consisterait (du moins en principe, car en pra-

tique le temps n�ecessaire serait prohibitif) �a faire la liste de toutes

les d�emonstrations possibles �ecrites dans le langage formel, c'est-�a-dire

dans le syst�eme d'axiomes choisi, par ordre de taille et par ordre al-

phab�etique des symboles employ�es. C'est ce qu'on peut appeler de

mani�ere imag�ee l'� algorithme du British Museum �, pour faire al-

lusion au gigantisme de l'� inventaire� �a e�ectuer. Autrement dit,

on �enum�ere toutes les d�emonstrations possibles, et on v�eri�e si elles

Le Hasard des Nombres 175

d�ecoulent bien des r�egles formelles du syst�eme axiomatique. De cette

fa�con, on obtient en principe tous les th�eor�emes, tout ce qui peut être

prouv�e dans le cadre du syst�eme d'axiomes. Et si celui-ci est coh�erent et

complet, toute a�rmation pourra être con�rm�ee (si elle est d�emontr�ee)

ou in�rm�ee (son contraire est alors d�emontr�e). Ainsi, cela fournit une

proc�edure m�ecanique permettant de d�ecider si une assertion est vraie

ou non.

Malheureusement, la situation s'est av�er�ee beaucoup moin simple.

On sait, depuis les travaux fondamentaux de l'AutrichienKurt G�odel en

1931 et du Britannique Alan Turing en 1936 (�g. 2), que cette entreprise

est vaine : il n'existe pas de syst�eme axiomatique coh�erent et complet

pour l'arithm�etique, et de plus il ne peut y avoir de proc�ed�e m�ecanique

permettant de d�eterminer, pour toute assertion math�ematique, si elle

est vraie ou fausse.

De ce r�esultat qui a profond�ement marqu�e la pens�ee math�ematique,

G�odel a fourni une tr�es ing�enieuse d�emonstration : c'est son c�el�ebre

� th�eor�eme d'incompl�etude �. Mais l'approche de Turing me sem-

ble, d'une certaine mani�ere, plus fondamentale et plus facile �a com-

prendre. Je me r�ef�ere ici au th�eor�eme de Turing, a�rmant qu'il n'ex-

iste pas de proc�edure m�ecanique pouvant d�eterminer, pour un pro-

gramme informatique arbitraire, s'il s'ex�ecutera en un temps �ni ou

non une fois mis en route. Le th�eor�eme d'incompl�etude de G�odel en

d�ecoule imm�ediatement : s'il n'existe pas de proc�edure m�ecanique pour

d�eterminer si un programme s'arrête en un temps �ni ou non, alors il

ne peut non plus exister de syst�eme d'axiomes permettant de le faire.

Turing : il n'existe pas d'algorithme g�en�e-

ral permettant de savoir si un programme

s'ex�ecutera en un temps �ni ou non

Sans entrer dans les d�etails, on peut esquisser une fa�con de d�emontrer

que le probl�eme de l'arrêt d'un programme est insoluble, en faisant

un raisonnement par l'absurde. Supposons qu'il existe une proc�edure

m�ecanique permettant de savoir, pour tout programme, si celui-ci

s'ex�ecutera en un temps �ni. Cela implique alors qu'il est possible

176 Part II|Discussion

de construire un programme (P) incorporant la donn�ee d'un nombre

entier N , et e�ectuant les tâches suivantes : d'abord, examiner tous

les programmes possibles de taille inf�erieure ou �egale �a N bits (tout

programme informatique pouvant être traduit en une suite de chi�res

binaires, 0 ou 1, appel�es bits, et constituant chacun une unit�e d'� in-

formation�) et d�eterminer lesquels d'entre eux s'arrêtent en un temps

�ni. Ensuite, simuler l'ex�ecution de tous ces derniers et consid�erer

leurs r�esultats. Supposons que les r�esultats soient des nombres entiers

positifs ou nuls, ce que l'on peut faire sans perte de g�en�eralit�e puisque

tout programme produit comme r�esultat une suite de 0 ou 1, laquelle

peut toujours être interpr�et�ee comme repr�esentant un entier positif ou

nul. La derni�ere tâche que l'on assigne alors au programme (P) est de

prendre le r�esultat le plus �elev�e produit par tous les programmes qui

s'arrêtent en un temps �ni et dont la taille ne d�epasse pas N bits, et

de calculer le double (par exemple) de ce r�esultat maximal.

Examinons maintenant la situation �a laquelle on aboutit. Le nom-

bre N est l'essentiel de l'information incluse dans le programme (P)
que l'on vient de d�ecrire. Par cons�equent, la taille de ce programme

est de l'ordre de log2N bits, puisque pour exprimer le nombre N , il

n'est besoin que de log2N bits dans le syst�eme binaire (par exemple,

le nombre 109 s'�ecrit 1101101 dans le syst�eme binaire, ce qui n�ecessite

donc 7 � log2 109 bits). Bien sûr, le programme (P) doit aussi contenir
d'autres instructions permettant d'�enum�erer et de simuler l'ex�ecution

de tous les programmes de taille inf�erieure �a N bits, mais le r�esultat

n'est pas fondamentalement modi��e : le programme (P) a bien une

taille d'ordre log2N bits (donc inf�erieure �a N bits). Ce point n�ecessite

peut être un peu plus d'�eclaircissements : na��vement, on aurait ten-

dance �a penser que (P) doit contenir en lui tous les programmes de

moins de N bits. Mais ce n'est pas parce que (P) simule leur ex�ecution

qu'il doit les contenir ! Pour donner une image, un programme charg�e

d'e�ectuer la somme de tous les entiers de 1 �a 1 000 n'a pas besoin

de contenir en m�emoire tous les entiers de 1 �a 1 000 : il les produit

successivement au fur et �a mesure du calcul de la somme. Cela pour

faire comprendre que N est bien l'ingr�edient principal du programme

(P). Mais revenons �a notre propos ; par construction, ce programme

produit un r�esultat qui est au moins deux fois plus grande que celui

produit par tout programme dont la taille est inf�erieure �a N bits : il

Le Hasard des Nombres 177

y a contradiction, puisque (P) fait lui-même partie de ces programmes

et qu'il donnerait donc un r�esultat au moins deux fois plus grand que

celui qu'il fournit lui-même... L'hypoth�ese de d�epart (l'existence de

(P)) est alors fausse. Le probl�eme de l'arrêt d'un programme est donc

insoluble, ce que nous venons de montrer en utilisant un point de vue

de la th�eorie de l'information.

Partons de ce r�esultat fondamental de Turing ; a�n d'obtenir mon

r�esultat �etabli en 1987(2) sur le hasard en math�ematiques, il su�t de

modi�er le vocabulaire. C'est une sorte de calembour math�ematique.

De l'insolubilit�e du probl�eme de l'arrêt, on passe au hasard li�e �a la prob-

abilit�e d'arrêt. Qu'est donc cette derni�ere ? Au lieu de se demander

si un programme donn�e va s'arrêter ou non au bout d'un temps �ni,

on consid�ere l'ensemble de tous les programmes informatiques possi-

bles, ce qui peut se faire en principe �a l'aide d'un ordinateur id�ealis�e,

appel�e dans le jargon � calculateur universel de Turing �. A chaque

programme possible, on associe une probabilit�e (�a ne pas confondre

avec la probabilit�e d'arrêt que l'on va bientôt d�e�nir). Comme tout

programme est �nalement �equivalent �a une suite de bits, on choisit

chaque bit au hasard, par exemple en tirant �a pile ou face : �a un pro-

gramme de N bits on associera donc la probabilit�e 1=2N . En fait, on

se limite aux programmes bien structur�es dont on suppose qu'ils se

terminent par l'instruction � �n de programme �, laquelle ne peut

apparâ�tre en d�ebut ou en milieu de programme ; autrement dit, au-

cun programme bien structur�e ne constitue l'extension d'un autre pro-

gramme bien structur�e. Cette hypoth�ese est technique mais essentielle,

car en son absence le total des probabilit�es 1=2N serait sup�erieur �a 1 (et

même in�ni). On d�e�nit alors la probabilit�e d'arrêt
 (om�ega) : c'est

la probabilit�e pour que, ayant tir�e au hasard un programme, celui-ci

s'ex�ecute en un nombre �ni d'�etapes. Ce nombre
 vaut
P

N
(a

N
=2N),

o�u a
N

est le nombre de programmes bien structur�es de N bits qui

s'ex�ecutent en un temps �ni.
 est une probabilit�e, donc un nombre

compris entre 0 et 1 ; si l'on trouvait
 = 0, cela signi�erait qu'aucun

programme ne s'arrête, et si l'on trouvait
 = 1, qu'ils s'arrêtent tous.

Cette probabilit�e peut être exprim�ee en diverses bases ; une base parti-

culi�erement commode est la base binaire, dans laquelle le nombre
 est

une suite de 0 ou 1, par exemple 0,111010001101.... La question que

l'on peut alors se poser est : � Quel est le N -i�eme bit de la probabilit�e

178 Part II|Discussion

d'arrêt
 ? �
L'assertion de Turing (� le probl�eme de l'arrêt est ind�ecidable

�) m�ene �a mon r�esultat �etablissant que la probabilit�e d'arrêt est

al�eatoire ou plus exactement constitue de l'information math�ematique

irr�eductible. En d'autres termes, chaque bit de la repr�esentation binaire

de
 est un fait math�ematique qui est logiquement et statistiquement

ind�ependant des autres : savoir si un bit donn�e de
 est un 0 ou un 1 est

un fait math�ematique irr�eductible, qui ne peut être davantage condens�e

ou r�eduit. Une mani�ere plus pr�ecise de le dire est que la probabilit�e

d'arrêt est algorithmiquement al�eatoire, c'est-�a-dire que pour calculer

N bits de la repr�esentation binaire de
, il faut un programme infor-

matique dont la taille est d'au moins N bits (voir l'encadr�e 1). Une

fa�con r�esum�ee d'exprimer cela est : � L'assertion que le N -i�eme bit

de
 est un 0 ou un 1, pour un N donn�e, est un fait math�ematique

al�eatoire, analogue au r�esultat d'un jet de pile ou face �.

On r�etorquera imm�ediatement que ce n'est pas le genre d'asser-

tions que l'on rencontre habituellement en math�ematiques pures. On

aimerait bien pouvoir traduire cet �enonc�e dans le langage de la th�eorie

des nombres, laquelle constitue le soubassement des math�ematiques.

En fait, G�odel �etait confront�e au même probl�eme. L'assertion vraie

mais ind�emontrable qu'il avait construite �etait bizarre, elle disait : �
je suis ind�emontrable ! �. G�odel a d�eploy�e �enorm�ement d'ing�eniosit�e

et utilis�e des raisonnements tr�es sophistiqu�es a�n de transformer� je

suis ind�emontrable � en un �enonc�e portant sur les nombres entiers.

Les travaux de G�odel ont donn�e lieu �a de nombreuses recherches, dont

la conclusion �nale est que le dixi�eme probl�eme d'Hilbert est insoluble

: il n'existe pas d'algorithme pouvant d�eterminer, en un nombre �ni

d'op�erations, si une �equation diophantienne arbitraire poss�ede une solu-

tion. En fait, ce probl�eme s'av�ere �equivalent �a celui de Turing sur l'arrêt

d'un programme : �etant donn�e un programme informatique, on peut

construire une �equation diophantienne qui a une solution si et seulement

si ce programme s'ex�ecute en un temps �ni ; r�eciproquement, �etant

donn�ee une �equation diophantienne, on peut construire un programme

qui s'arrête si et seulement si cette �equation poss�ede une solution.

Particuli�erement spectaculaires sont dans ce contexte les travaux des

math�ematiciens James P. Jones, de l'universit�e de Calgary au Canada,

et Yuri V. Matijasevi�c, de l'institut Steklov �a L�eningrad, publi�es il y a

Le Hasard des Nombres 179

environ six ans(3). Ces deux math�ematiciens ont remarqu�e qu'il existait

un th�eor�eme tr�es simple, d�emontr�e par le Fran�cais Edouard Lucas, il y

a plus d'un si�ecle, et qui r�esoud le dixi�eme probl�eme de Hilbert assez

facilement s'il est utilis�e de fa�con appropri�ee. Le th�eor�eme de Lucas

concerne la parit�e des coe�cients du binôme : demandons-nous si le

coe�cient deXK dans le d�eveloppement de (1+X)N est pair ou impair,

c'est-�a-dire quelle est la parit�e du K-i�eme coe�cient binomial d'ordre

N (pour K = 0, 1, 2,..., N) ; le th�eor�eme de Lucas r�epond que ce

coe�cient est impair si et seulement si � K implique N en tant que

suites de bits �. Cela signi�e que ce coe�cient est impair si �a chaque

� 1 � de la repr�esentation binaire de K correspond un � 1 � �a la

même place dans la repr�esentation binaire de N (�g. 3). Dans le cas

contraire, le coe�cient binomial est pair.

En utilisant la technique de Jones et Matijasevi�c (voir l'encadr�e

2), qui se fonde sur ce remarquable th�eor�eme de Lucas, j'ai mis au

point un ensemble de programmes, �ecrits dans le langage C (et tr�es

r�ecemment, dans le langage SETL2(4)), et que j'ai fait � tourner �
sur un ordinateur IBM RISC System/6000 (les lecteurs int�eress�es par

le logiciel peuvent me contacter(5)). Pour obtenir quoi ? Une �equation

diophantienne, plus exactement une �equation diophantienne exponen-

tielle. Les �equations de ce type ne comportent que des additions, des

multiplications et des exponentiations, les constantes et les inconnues

consid�er�ees �etant des nombres entiers positifs ou nuls. Contrairement

�a une �equation diophantienne classique, on admet que la puissance �a

laquelle est �elev�ee une inconnue puisse être aussi une inconnue. Ainsi,

par exemple, une telle �equation peut contenir non seulement des termes

comme X2 ou X3, mais aussi des termes comme XY ou Y X .

L'�equation diophantienne que j'ai obtenue comporte pr�es de 17 000

variables et occupe plus de 200 pages (voir � Une extension spec-

taculaire du th�eor�eme de G�odel : l'�equation de Chaitin � dans La

Recherche de juin 1988) ! Quelle est sa signi�cation ? Elle contient

un param�etre unique, le nombre N . Pour toute valeur donn�ee de ce

param�etre, posons-nous la question suivante : � Cette �equation a-t-elle

un nombre �ni ou in�ni de solutions en nombres entiers (c'est-�a-dire un

nombre �ni ou in�ni de listes de 17 000 nombres entiers, chaque liste

�etant une solution de l'�equation) ? �. La r�eponse �a cette question

s'av�ere être un fait arithm�etique al�eatoire, analogue �a un tirage �a pile

180 Part II|Discussion

ou face. Elle est une transcription arithm�etique du fait math�ematique

irr�eductible que le N -i�eme bit de la probabilit�e d'arrêt
 est 0 ou 1 :

si cette �equation diophantienne (de param�etre N) a un nombre �ni de

solutions, alors ce N -i�eme bit est 0, et si l'�equation poss�ede un nombre

in�ni de solutions, ce bit est 1 (soulignons en passant que s'il n'y a pas

de solution, le nombre de solutions est �ni et vaut 0). La r�eponse �a

la question ne peut donc pas être calcul�ee, et le N -i�eme bit de
 non

plus. Cela ne veut pas dire que les bits de
 ne sont pas d�e�nis et

d�etermin�es math�ematiquement, mais plutôt qu'il n'existe pas d'algo-

rithme �a nombre �ni d'�etapes pour les calculer, et que la connaissance

des N premiers bits de
 n'aide strictement en rien �a la d�etermination

des suivants.

La di��erence par rapport au probl�eme pos�e par Hilbert est double

; d'une part, Hilbert ne pensait qu'aux �equations diophantiennes clas-

siques, non exponentielles ; d'autre part, la question qu'il avait pos�ee

�etait : � Y a-t-il une solution �a l'�equation ? � Cette question est

ind�ecidable, mais la r�eponse n'est pas totalement al�eatoire, elle ne l'est

que dans une certaine mesure. Les r�eponses ne sont pas ind�ependantes

les unes des autres ; en e�et, on sait qu'�etant donn�e un nombre �ni

d'�equations diophantiennes, il est possible de d�eterminer lesquelles ont

une solution si l'on sait combien d'entre elles en poss�edent. Pour obtenir

un hasard vraiment total, semblable �a celui associ�e �a un tirage �a pile

ou face, la question ad�equate que l'on doit poser est : � Y a-t-il un

nombre �ni ou in�ni de solutions ? � Mon assertion est que l'on ne

pourra jamais le savoir, car d�ecider si le nombre de solutions est �ni ou

in�ni, pour chaque valeur de N , est un fait math�ematique irr�eductible.

La r�eponse est, au sens algorithmique, al�eatoire. La seule fa�con d'aller

de l'avant est de consid�erer les r�eponses comme des axiomes. Si l'on

cherche �a r�esoudreM fois la question de savoir si le nombre de solutions

est �ni pourM valeurs donn�ees du param�etre N , alors il faudra incluire

M bits d'information dans les axiomes de notre syst�eme formel. C'est

en ce sens pr�ecis que l'on peut dire que les math�ematiques contiennent

du � hasard �.

Le Hasard des Nombres 181

La probabilit�e d'arrêt est algorithmique-

ment al�eatoire

Dans le sixi�eme probl�eme que Hilbert avait propos�e, l'axiomatisation de

la physique devait selon lui englober l'axiomatisation de la th�eorie des

probabilit�es. Au �l des ans, cependant, la th�eorie des probabilit�es est

devenue une branche des math�ematiques �a part enti�ere. Mais d'apr�es

ce qui pr�ec�ede, une forme extrême de� hasard�| plus pr�ecis�ement,

d'irr�eductibilit�e | apparâ�t dans un autre contexte, en math�ematiques

pures, en th�eorie �el�ementaire des nombres. Les recherches aboutissant

�a ces conclusions prolongent les travaux de G�odel et Turing, qui ont

r�efut�e l'hypoth�ese de base faite par Hilbert et d'autres, selon laquelle

toute question math�ematique poss�ede une r�eponse univoque.

Cela fait maintenant pr�es d'un si�ecle que la philosophie et les fonde-

ments des math�ematiques suscitent un grand int�erêt. Auparavant,

de nombreux e�orts ont �et�e consacr�es �a rendre rigoureuse l'analyse

math�ematique (la notion de nombre r�eel, de limite, etc.). L'exa-

men moderne des math�ematiques a r�eellement d�ebut�e, je pense, avec

la th�eorie de l'in�ni de G. Cantor et les paradoxes et les surprises

qu'elle a engendr�es, et avec les e�orts fournis par des math�ematiciens

comme Peano, Russell et Whitehead pour donner aux math�ematiques

des fondements solides et rigoureux. On avait plac�e beaucoup d'espoir

en la th�eorie des ensembles. On avait ainsi cherch�e �a d�e�nir de fa�con

rigoureuse les nombres entiers 0, 1, 2, 3,... en termes d'ensembles. Mais

il s'est av�er�e que la notion d'ensemble peut engendrer toutes sortes

de paradoxes (Bertrand Russell en a donn�e un exemple c�el�ebre : �
L'ensemble de tous les ensembles qui ne font pas partie d'eux-mêmes

� ; cet ensemble fait-il partie de lui-même ?). La th�eorie des ensembles

est une partie fascinante et vitale des math�ematiques ; n�eanmoins il me

semble qu'il y a eu un certain d�esabusement vis-�a-vis d'elle et qu'un

retour aux 0, 1, 2, 3,... intuitifs s'est op�er�e. Malheureusement, les

travaux que j'ai mentionn�es, et en particulier mon propre travail, font

que l'�edi�ce des nombres entiers parâ�t moins solide qu'on ne le pen-

sait. J'ai toujours cru, et probablement la plupart des math�ematiciens

y croient aussi, en un sorte d'univers platonicien o�u r�egne une� r�ealit�e

math�ematique� ind�ependante de la r�ealit�e physique. Ainsi, la ques-

182 Part II|Discussion

tion de savoir si une �equation diophantienne a un nombre �ni ou in�ni

de solutions a tr�es peu de sens concret, mais j'ai toujours pens�e en mon

for int�erieur que même si nous ne pourrons jamais y r�epondre, Dieu,

lui, le pouvait.

Avec ces d�ecouvertes, les math�ematiciens sont en train de rejoin-

dre, en un sens, leurs coll�egues de la physique th�eorique. Ce n'est

pas n�ecessairement une mauvaise chose. Dans la physique moderne, le

hasard et l'impr�evisibilit�e jouent un rôle fondamental ; la reconnais-

sance et la caract�erisation de ce fait, lequel pouvait être per�cu a priori

comme une limitation, sont un progr�es. J'ai la conviction qu'il en sera

de même en math�ematiques pures. 2

Gregory J. Chaitin travaille au centre de recherches Thomas J.

Watson d'IBM �a Yorktown Heights aux Etats-Unis. Ses recherches ont

trait �a la th�eorie algorithmique de l'information, dont il a pos�e les bases

vers le milieu des ann�ees 1960.

Pour en savoir plus :

2 G. J. Chaitin, Algorithmic information theory, Cambridge University

Press, 1990 (troisi�eme impression).

2 G. J. Chaitin, Information, randomness and incompleteness | Pa-

pers on algorithmic information theory,World Scienti�c, 1990 (seconde

�edition).

2 E. Nagel, J.R. Newman, K. G�odel et J.-Y. Girard, Le th�eor�eme de

G�odel, Seuil, 1989.

Notes

(1) Voir par exemple l'article � Hilbert (probl�emes de) � de Jean-

Michel Kantor dans Encyclopedia Universalis, vol. 9, 300, 1985.

(2) G.J. Chaitin, Advances in Applied Mathematics, 8, 119, 1987;

Le Hasard des Nombres 183

G.J.Chaitin, Algorithmic information theory, Cambridge University

Press, 1990 (troisi�eme impression).

(3) J.P. Jones et Y.V. Matijasevi�c, Journal of Symbolic Logic, 49, 818,

1984.

(4) SETL2 est un nouveau langage de programmation, permettant

d'�ecrire ces programmes de fa�con plus courte et plus facile �a com-

prendre (mais ils sont plus lents). Ce langage se fonde sur un id�ee

de J.T.Schwartz de l'institut Courant �a New York, selon laquelle la

th�eorie des ensembles peut être convertie directement dans un langage

de programmation (voir W.K. Snyder, The SETL2 programming lan-

guage, Courant Institute, 1990; J.T. Schwartz et al., Programming with

sets | An introduction to SETL, Springer-Verlag, 1986).

(5) G.J. Chaitin, LISP for � Algorithmic information theory � in

C, août 1990.

Encadr�e 1. Les d�ecimales de � forment-

elles une suite al�eatoire?

En quel sens la suite de chi�res qui composent un nombre peut-elle

être quali��ee d'� al�eatoire � ? La question est moins simple qu'elle

ne parâ�t. Il y a pr�es d'un si�ecle, le math�ematicien fran�cais Emile Borel

(voir clich�e) avait d�e�ni dans ce contexte la notion de nombre� normal

� et avait d�emontr�e que presque tous les nombres sont normaux.

Qu'est-ce qu'un nombre normal ? Un nombre est dit normal

dans une base b si chacun des b chi�res possibles apparâ�t, dans le

d�eveloppement du nombre selon cette base, avec la même fr�equence

1=b, si chacun des b2 groupes de deux chi�res successifs apparâ�t avec

la même fr�equence 1=b2, et de même avec les groupes de trois chi�res,

de quatre chi�res, etc. Par exemple, un nombre est normal dans le

syst�eme binaire (b = 2) si dans son d�eveloppement binaire les chi�res 0

et 1 apparaissent avec las même fr�equence limite 1/2, si les s�equences

00, 01, 10, 11 apparaissent avec la même fr�equence limite 1/4, etc. Un

184 Part II|Discussion

nombre est dit absolument normal s'il est normal quelle que soit la base

b dans laquelle il est exprim�e.

E. Borel montra en 1909 que presque tous (expression qui a un

sens math�ematique pr�ecis) les nombres r�eels sont absolument normaux.

En d'autres termes, choisissons un nombre en tirant �a pile ou face

chacun de ses bits constituant son d�eveloppement in�ni dans le syst�eme

binaire. Alors, le nombre compris entre 0 et 1 choisi de cette fa�con est

absolument normal, et cela � presque sûrement �, c'est-�a-dire avec

une probabilit�e �egale �a 1.

Si la non-normalit�e est l'exception �a la r�egle, on serait tent�e de

penser qu'il est facile de trouver des exemples de nombres normaux.

Qu'en est-il par exemple de
p
2, � ou e ? Sont-ils normaux ? Chose

�etonnante, on n'en sait rien ! De nombreux calculs par ordinateurs ont

�et�e e�ectu�es a�n d'obtenir les chi�res successifs formant ces nombres

et de d�eterminer leur fr�equence d'apparition ; tout se passe comme

s'ils �etaient normaux, mais personne n'a pu �a ce jour le d�emontrer

rigoureusement. En fait, il a �et�e extrêmement di�cile d'exhibir un ex-

emple de nombre normal. En 1933, D.G. Champernowne parvint �a

exhiber un nombre qu'il put d�emontrer être normal dans le syst�eme

d�ecimal ; ce nombre s'�ecrit :

0, 0 1 2 3 4 5 6 7 8 9

10 11 12...98 99 100 101 102...

998 999 1000 1001 1002....

Mais on ne sait pas si ce nombre est normal absolument, c'est-�a-dire

normal dans toute base.

N�eanmoins, on dispose �a pr�esent d'un exemple naturel de nombre

absolument normal : la probabiliti�e d'arrêt
 dont il est question dans

l'article. En e�et, on peut facilement d�emontrer que
 est absolument

normal �a partir du fait qu'il est algorithmiquement al�eatoire. Un nom-

bre est algorithmiquement al�eatoire si, pour d�eterminer N bits de son

d�eveloppement binaire, il faut un programme dont la taille est d'au

moins N bits. Pour donner un contre-exemple, les N d�ecimales des

nombres 0,1111111111... ou 0,110110110110... peuvent être calcul�es

tr�es facilement par un programme dont la taille est tr�es inf�erieure �a N
(pour N pas trop petit) ; en e�et, il su�t de traduire les ordres �

Le Hasard des Nombres 185

r�ep�eter N fois le chi�re 1 � ou � r�ep�eter N 0 fois la s�equence 110 �
en langage binaire. Ces nombres ne sont donc pas du tout algorith-

miquement al�eatoires. Même si
p
2, � ou e sont normaux (ce qui reste

�a prouver), ils ne peuvent être algorithmiquement al�eatoires, puisqu'il

existe des algorithmes de taille �nie pour calculer leurs chi�res succes-

sifs. Le nombre de Champernowne est même pire �a cet �egard : non

seulement ses chi�res sont calculables et pr�evisibles, mais en plus il est

tr�es facile de le faire. On voit donc clairement que la notion de nom-

bre algorithmiquement al�eatoire est beaucoup plus forte que celle de

nombre normal. De la même fa�con, la grande importance pratique des

algorithmes produisant des nombres pseudo-al�eatoires (utilis�es dans les

jeux informatiques ou dans certains m�ethodes de calcul num�erique)

r�eside pr�ecis�ement dans le fait que les suites de nombres produites

sont extrêmement compressibles, algorithmiquement parlant. (Clich�e

Harlingue-Viollet)

Encadr�e 2. Tirer �a pile ou face �a l'aide

d'une �equation diophantienne

Comment traduire en �equation alg�ebrique la d�etermination des bits

de la probabilit�e d'arrêt
 dont il est question dans l'article ? La

m�ethode utilise une technique d�evelopp�ee par Jones et Matijasevi�c, qui

elle-même s'appuie sur le th�eor�eme de Lucas. Celui-ci a�rme (�g. 3)

queK� implique�N bits �a bit si et seulement si leK-i�eme coe�cient

binomial d'ordre N est impair. Jones et Matijasevi�c montrent que cela

est �equivalent �a dire que dans la base b = 2N , le K-i�eme chi�re de 11N

est impair.

Math�ematiquement, cela s'exprime ainsi : K � implique � N si

et seulement s'il existe des entiers positifs ou nuls uniques b, x, y, z, u,

v, w tels que

b = 2N

(b+ 1)N = xbK+1 + ybK + z

z + u+ 1 = bK

y + v + 1 = b

186 Part II|Discussion

y = 2w + 1

Pour obtenir une �equation diophantienne, il su�t de r�e�ecrire ces cinq

�equations pour que leur membre de droite soit 0, de les �elever au carr�e

et de les ajouter. On obtient l'�equation

[b� 2N]2+

[(b+ 1)N � xbK+1 � ybK � z]2+
[z + u+ 1 � bK]2+
[y + v + 1� b]2+
[y � 2w � 1]2 = 0

L'�equation de 200 pages que j'ai obtenue a �et�e construite en utilisant

de fa�con r�ep�et�ee cette technique, a�n d'exprimer en une �equation dio-

phantienne le calcul du N -i�eme bit d'une K-i�eme approximation de
.

Cette �equation poss�ede exactement une solution si ce bit est 1, et n'en

poss�ede pas si ce bit est 0. On change alors le point de vue, et on

consid�ere K non pas comme un param�etre mais comme une inconnue

suppl�ementaire. La même �equation aura alors, pour une valeur donn�ee

du param�etre N , un nombre �ni ou in�ni de solutions selon que le N -

i�eme bit de
 est 0 ou 1 (la valeur de K peut di��erer d'une solution

�a l'autre). Pour K assez grand, l'approximation de
 est su�sament

bonne pour que le N -i�eme bit de la K-i�eme approximation de
 soit le

bon. Mais il est impossible de calculer, pour N donn�e, la valeur de K
�a partir de laquelle le bit a la bonne valeur, car la probabilit�e d'arrêt

 est algorithmiquement al�eatoire.

Figure 1.

En 1900, lors d'un congr�es tenu �a Paris, le grand math�ematicien alle-

mand David Hilbert (1862{1943) a �enonc�e une liste rest�ee c�el�ebre

de 23 probl�emes ouverts. Ses travaux et ses r�e
exions ont con-

sid�erablement in
uenc�e les recherches math�ematiques du vingti�eme

si�ecle. Son dixi�eme probl�eme concernait la r�esolubilit�e des �equations

diophantiennes : existe-t-il une proc�edure permettant de d�eterminer en

un nombre �ni d'op�erations si une �equation diophantienne arbitraire

Le Hasard des Nombres 187

poss�ede une solution ? Y.V. Matijasevi�c a pu montrer en 1970 que la

r�eponse �etait n�egative. De nombreux probl�emes de math�ematiques peu-

vent être traduits en termes de non-r�esolubilit�e d'une certaine �equation

diophantienne ; c'est le cas de la question si oui ou non un programme

informatique s'ex�ecute en un temps �ni. (Clich�e Bildarchiv Preussis-

cher Kulturbesitz)

Figure 2.

Le logicien autrichien K. G�odel (1906{1978) (A) a �ebranl�e en 1931 la

conviction intime de la quasi-totalit�e des math�ematiciens, conviction

selon laquelle il �etait possible de construire des syst�emes formels d'ax-

iomes qui soient complets et coh�erents. Il a pu d�emontrer que tout

syst�eme formel comporte des �enonc�es qui sont ind�ecidibles, c'est-�a-dire

qui ne peuvent être con�rm�es ou in�rm�es en utilisant uniquement les

axiomes du syst�eme. Le Britannique A.M. Turing (1912{1954) (B) a

formalis�e les notions de calculabilit�e et d'algorithmique qui sont les

fondements th�eoriques de l'informatique. Il a notamment montr�e en

1936 qu'il n'existe pas de proc�edure m�ecanique permettant de savoir si

un programme arbitraire s'ex�ecutera en un temps �ni ou non. (Clich�es

AFP et E.T. ARCHIVE)

Figure 3.

Une programme informatique �etant choisi au hasard, la probabilit�e

pour qu'il s'ex�ecute en un temps �ni peut s'�ecrire dans le syst�eme bi-

naire sous forme d'une suite de 0 ou 1, appel�es bits. Pour obtenir une

�equation d�eterminant les bits de la probabilit�e d'arrêt d'un programme

choisi au hasard, G.J.Chaitin a utilis�e des techniques qui s'appuient sur

un th�eor�eme simple dû �a un math�ematicien fran�cais du si�ecle dernier,

Edouard A. Lucas (1842{1891). Ce th�eor�eme a�rme que le coe�cient

de XK dans le d�eveloppement de (1 +X)N est impair si et seulement

si les � 1 � de l'�ecriture binaire de K se retrouvent �a la même place

dans l'�ecriture binaire de N .

188 Part II|Discussion

COMPLEXITY AND

RANDOMNESS IN

MATHEMATICS

\Pensar la complexitat" Symposium,

Barcelona, 4 November 1991

G. J. Chaitin

Abstract

I have developed a mathematical theory of complexity, which I call \algo-

rithmic information theory." I have applied this theory to mathematics

itself, and have shown that mathematics is not as simple as had been

thought, and indeed that arithmetic contains in�nite complexity and

complete randomness. Here I shall give examples of my mathematical

concept of complexity and how it is measured, outline its main proper-

ties, and discuss what it says about the limitations of mathematics.

To be published in Spanish by Tusquets Editores, S.A.

189

190 Part II|Discussion

1. Introduction

Mathematics is much simpler than physics or biology, because it does

not have to deal with the real world. I have developed a very the-

oretical mathematical theory of complexity, which I call \algorithmic

information theory." Hopefully it may help to suggest to physicists and

biologists what to do to develop their own more practical theories of

complexity.

I have used algorithmic information theory to clarify the meaning

of randomness, patternlessness, and lack of structure, and to show that

some arithmetical questions, mathematical questions involving whole

numbers or integers, have answers which completely escape the power

of mathematical reasoning because they are completely random, pat-

ternless, and unstructured.

Formerly it was widely assumed by mathematicians, and empha-

sized by the famous mathematician David Hilbert, that mathematics

was simple in the sense that all questions could be resolved by reasoning

based on a small �nite set of mathematical axioms that all could agree

upon. The surprising results obtained by Kurt G�odel and Alan Tur-

ing, the incompleteness theorem and the undecidability of the halting

problem, showed that mathematics is not that simple.

I have greatly extended the work of G�odel and Turing by showing

that there are in�nite classes of mathematical questions which are in�-

nitely and irreducibly complex, in that the answers exhibit absolutely

no structure or pattern that we could ever perceive using any �nite set

of mathematical axioms. Thus mathematics, and in fact even elemen-

tary arithmetic, far from being simple, is in�nitely complex!

A good way to summarize this situation, is to connect it with par-

allel developments in modern physics. Classical physics has given way

to quantum physics and now to chaos theory, and it certainly appears

that, to use Einstein's words, God plays dice with the physical universe,

that physics is complex and harbors randomness and unpredictability.

My work shows that God also plays dice with the whole numbers, in

arithmetic, because there are arithmetical questions involving the whole

numbers whose answers are completely random.

Here I shall attempt to outline these developments and give an

overall feel for the character of my theory, without giving any proofs

Complexity and Randomness in Mathematics 191

or going into the technical details. I shall illustrate the discussion with

many examples and try to keep everything as concrete as possible.

2. Complexity

Let's start by looking at some examples of how to measure complexity.

We shall measure complexity in binary digits or bits.

Here is an n-bit string which is random and has complexity n:

n bitsz }| {
10 � � � 1

This sequence of n bits is produced by tossing a coin n times. The coin

must be fair, that is, the probability of producing a head and a tail

must both be equal to 1=2. The tosses must also be independent. If

we get heads, we add a 1 to the sequence. If we get tails, we add a 0

to the sequence. We do this n times. There is no pattern or structure

in the resulting sequence of 0's and 1's.1

Here are three examples of n-bit strings which only have complexity

n=2:
n=2 bitsz }| {
10 � � � 1

n=2 bitsz }| {
10 � � � 1

In the above sequence, the �rst half is produced by tossing a coin n=2
times. The second half is a copy of the �rst half.

n=2 bitsz }| {
10 � � � 1

n=2 bitsz }| {
1 � � � 01

In the above sequence, the �rst half is produced by tossing a coin n=2
times. The second half is the bit string reversal of the �rst half.

n=2 pairsz }| {
11|{z}
1

00|{z}
0

� � � 11|{z}
1

This time we produce an n-bit sequence of complexity n=2 by tossing

a coin n=2 times to produce an n=2-bit string, and then doubling each

bit.

1More precisely, this is highly probable.

192 Part II|Discussion

Here are two examples of n-bit strings which have complexity n=3:

n=3 bitsz }| {
10 � � � 1

n=3 bitsz }| {
10 � � � 1

n=3 bitsz }| {
10 � � � 1

In the above sequence, the �rst third is produced by tossing a coin n=3

times. This sequence is then copied twice.

n=3 triplesz }| {
111|{z}
1

000|{z}
0

� � � 111|{z}
1

This time we produce an n-bit sequence of complexity n=3 by tossing

a coin n=3 times to produce an n=3-bit string, and then tripling each

bit.

Now let's look at some examples of bit strings with much lower

complexity:
n 1'sz }| {

111 � � � � � � 111

�rst n bits of fractional part of
p
2 in binaryz }| {� � � � � � � � � � � � � � �

�rst n bits of fractional part of � in binaryz }| {� � � � � � � � � � � � � � �

To produce each of these sequences, one really only needs to know n,
which is usually about log2 n bits,2 so these are n-bit strings which only

have complexity log2 n. All the information is really in their size, not

in their content!

These examples all illustrate the following

Idea: the complexity of an object is the number of bits

required to specify/describe how to construct/compute/

calculate it.

2\Usually," because some n have a special form, e.g., are a power of two.

Complexity and Randomness in Mathematics 193

Here is a more advanced example:

n bitsz }| {
75% 1's, 25% 0's.

For example, if 75% of the bits are 1's and 25% are 0's, then this n-bit
sequence has its complexity reduced to 80% of what it would normally

be, about :80n. Here we assume that the sequence has 1's and 0's in

the proportion of 3 to 1 but is otherwise random. That is to say, it has

been produced by n independent tosses of a coin which has probability

.75 of producing heads and probability .25 of producing tails.

More generally, consider the following n-bit string:

n bitsz }| {
�n 1's, �n 0's.

In this string the relative frequency of 1's is � and the relative frequency

of 0's is �. It was produced by
ipping a coin which produces 1's with

probability � and 0's with probability �. In this case the maximum

possible complexity, which is n bits, is reduced by a factor known as

the Boltzmann{Shannon entropy, given by the following formula:

�� log2 �� � log2 �:

3. Is Complexity Additive?

How can we combine two bit strings into a single bit string? This turns

out to be a real problem!

What about the complexity of a pair of strings hx; yi? Is this always

less than the sum of their individual complexities? It would seem so. If

x and y have nothing in common, �rst tell me how to compute x, then
tell me how to compute y. If they are related, one can combine parts

of the computation and do even better.

But this doesn't work. The problem is telling where the description

for x ends and that for y begins.
Here is an example. Let's try to combine the strings 101 and 000.

h101; 000i

194 Part II|Discussion

This is easy to do because the strings are the same size

101000
divide in middle�! h101; 000i

So this special case is easy.

But what if the strings that we wish to combine have di�erent sizes?

h101; 00000i

One straight-forward approach is to double each bit and use a pair of

unequal bits as an endmarker:

�rst stringz }| {
11|{z}
1

00|{z}
0

11|{z}
1

01|{z}
:

second stringz }| {
00|{z}
0

00|{z}
0

00|{z}
0

00|{z}
0

00|{z}
0

01|{z}
:

This shows that the complexity H(x; y) of two strings x and y is

bounded by twice the sum of their individual complexities. Symbol-

ically,

H(x; y) � 2H(x) + 2H(y):

This approach also works if we are combining three or more strings:

H(x; y; z) � 2H(x) + 2H(y) + 2H(z):

But this is very wasteful! We can do much better!

Here is a more clever approach. Let's just concatenate the given

strings, and put in front of each string its size in binary. This is called

a \header". But how do we know where the header ends and the

data begins? Well, we double each bit in the header and use 01 as

punctuation. Here is an example:

headerz }| {
11|{z}
1

11|{z}
1

01|{z}
:| {z }

3

3 bitsz}|{
101

headerz }| {
11|{z}
1

00|{z}
0

11|{z}
1

01|{z}
:| {z }

5

5 bitsz }| {
00000

This shows that the complexity of two strings is bounded by the sum

of their individual complexities plus twice the logarithms of their com-

plexities:

H(x; y) � H(x) +H(y) + 2 log2H(x)H(y):

Complexity and Randomness in Mathematics 195

And similarly if there are three or more strings:

H(x; y; z) � H(x) +H(y) +H(z) + 2 log2H(x)H(y)H(z):

? Now change the point of view: require descriptions to

be self-delimiting, so each H gets bigger and H is additive3.

4. Self-Delimiting Complexity

So here is our initial approach for making descriptions self-delimiting:

headerz }| {
11|{z}
1

00|{z}
0

11|{z}
1

01|{z}
:| {z }

5

5 bitsz }| {
00000

In general, this will make an n-bit string into an (n+2 log n)-bit string:

n �! n+ 2 log n:

We can improve this if instead of doubling each bit in the header to

make it self-delimiting, we precede the header itself by a second header!

headerz }| {
11|{z}
1

11|{z}
1

01|{z}
:| {z }

3

3 bitsz}|{
101| {z }
5

5 bitsz }| {
00000

This will make an n-bit string into an (n+log n+2 log log n)-bit string:

n �! n+ log n+ 2 log log n:

And with headers of headers of headers, we make an n-bit string

into an (n+ log n+ log log n+ 2 log log log n)-bit string:

n �! n+ log n+ log log n + 2 log log log n:

What about strings that are 2n bits of data? For such strings, it is

cheaper to use a header which is a program for computing the length of

3Technically, \subadditive."

196 Part II|Discussion

the data, rather than to give the length of the data directly. And instead

of having a header on the header etc., let's break the in�nite regress

by stipulating that the header which is a program for computing the

length of the data must itself be self-delimiting. Thus the most compact

header preceding n bits of data has as many bits as the self-delimiting
complexity of the number n. This is usually about log n+log log n+� � � ;
but can be much much shorter if the number of bits of data, considered

as a bit string, is highly non-random, i.e., has complexity much smaller

than its size.

In summary, the new viewpoint which automatically makes com-

plexity additive works like this:

Random N -bit String

Old Complexity Measure N

New Complexity Measure N + complexity of N

Once we make this fundamental conceptual shift, a lot changes.

The most important change is that no extension of a valid program is

a valid program, since we know how many bits it has from its header.

This implies that we can now talk about the probability of computing

something as well as the minimal-program complexity.

The program-size complexity is de�ned as follows:

H(x) � min
C(p)=x

jpj:

That is to say, H(x) is the minimum size in bits jpj that a program p
must have in order to be able to compute a given object x using our

standard computer C.4

Now let's generate the program p at random. That is to say, we toss

a fair coin, one independent toss for each bit of p, and the probability

of computing x using our standard computer C is simply the sum of

4The choice of C is not very important. Technically speaking, C must be a
\universal Turing machine," i.e., su�ciently general-purpose that it can simulate
any other computer. Moreover, it must be able to do this economically, that is to
say, by adding a �xed number of bits to each program to indicate which computer
is to be simulated.

Complexity and Randomness in Mathematics 197

the probability of each program p that computes x. The probability of

a program p is merely

2�(the number of bits jpj in the program p):

Adding these probabilities for all p that compute x, we see that the

probability P (x) of computing x is precisely

P (x) =
X

C(p)=x

2�jpj:

Moreover, if we add the probabilities that our computer C computes

anything at all, this gives the total halting probability
.

 =
X

C(p) halts

2�jpj:

None of these probabilistic notions could work before, when our

computer programs/descriptions were not self-delimiting. The reason

is that before we had 2n n-bit programs, and if each has probability 2�n,

then summing the probabilities of all programs of all sizes that do some-

thing particular will give in�nity. When programs are self-delimiting

this no longer happens, because no extension of a valid program is a

valid program. I.e., if p is a valid program, then p0, p1, p00, p01, : : :
cannot be.

There is a geometrical proof that this works. Associate bit strings

with subsets of the interval of unit length consisting of all real numbers

r between zero and one. The string b is associated with all those real

numbers r having that string at the beginning of the fractional part of

r's base-two representation:

b
is associated with ! fthe set of all reals of the form :b � � � g:

Then the length of the interval associated with a program is precisely

its probability. That no extension of a valid program is a valid program

means that the intervals associated with valid programs do not overlap.

Hence the sum total of the lengths of these non-overlapping intervals

must be less than unity, since they are all inside an interval of unit

length. In other words, the total probability that a program is valid is

less than unity, as it should be, and not in�nite.

198 Part II|Discussion

5. Joint, Relative and Mutual Complexity

In addition to the plain complexity we have discussed up to now, there

are some important variations called the joint, relative, and the mutual

complexity, which involve two or more objects instead of a single object.

And these composite complexities have some important and elegant

properties.

5.1. Joint Complexity

We have actually already seen the �rst of these composite complexities,

the joint complexity H(x; y; : : :) of two or more objects x; y; : : : : The
key property of the joint complexity is (sub)additivity:

H(x; y; : : :) � H(x) +H(y) + � � � ;
the joint complexity is bounded by the sum of the individual complex-

ities. In fact, we changed our de�nition of complexity and demanded

that descriptions be self-delimiting precisely so that this inequality

would hold.

A more esoteric and subtle property is that the complexity of an

object x is equal to that of the pair hx;H(x)i consisting of the object

x and its complexity H(x):

H(x;H(x)) = H(x):

This is the case because a minimum-size program tells us its size as well

as its output. In other words, in addition to interpreting a minimum-

size description of an object to determine the object, we can also see

the size of the description, and this can be very useful.

This is a rather technical point, and I'd best not say any more about

this equation, except that it indicates most clearly where the formalism

of my algorithmic information theory di�ers from the original Shannon

formalism of classical ensemble information theory. It also leads to my

next subject, the relative complexity of two objects.

5.2. Relative Complexity

The relative complexityH(x j y) of x given y is the size of the shortest/
smallest description of how to obtain x from y. However, and this is a

Complexity and Randomness in Mathematics 199

key point, this is not quite right. It is actually necessary to de�ne the

relative complexity H(x j y) of x given y as the size of the shortest/

smallest description of how to obtain x from the pair hy;H(y)i. This
is somewhat subtle and technical, and very closely related to the fact

that H(y;H(y)) = H(y).
When relative complexity is correctly de�ned, it turns out that the

following fundamental decomposition holds:

H(x; y) = H(x) +H(y j x):

In other words, the joint complexity of x and y is equal to the sum of

the complexity of x and the relative complexity of y given x. Let me

repeat that here in H(y j x) we are not given x directly, we are given

a minimum-size description of x, which is equivalent to knowing x and

H(x).

5.3. Mutual Complexity

This leads us to the mutual complexity H(x : y), which measures the

extent to which it is cheaper to compute x and y together rather than to
compute them separately. In other words, this is the extent to which

two objects appear less complex when seen together than when seen

separately. H(x : y) measures the extent to which x and y are related,
i.e., how much they have in common.

It is an important theorem of mine that H(x : y) is also equal to the
extent to which knowing x helps one to know y, and vice versa. I.e.,

the extent to which each of two objects seems less complex given the

other, turns out to be equal to the extent to which it is less complex to

compute them together than separately:

H(x : y) � H(x) +H(y)�H(x; y);

= H(x)�H(x j y);
= H(y)�H(y j x):

This is very important because it shows that my de�nitions of self-

delimiting complexity and of the relative complexity of one object

given a minimal-description of another object are the correct de�ni-

tions. Many variations of these de�nitions seem plausible but reveal

their inadequacy by failing to have this property.

200 Part II|Discussion

Here are two examples of the mutual complexity.

At one extreme, consider two n-bit strings x and y chosen at ran-

dom. They have only their length in common, not their content, so

their mutual complexity H(x : y) is equal to H(n), which is usually

� log2 n unless n is of a special form.

At the other extreme, H(x : x) = H(x), that is say, if one considers

two identical objects, all their complexity is mutual.

6. Complexity of Axiomatic Theories

Let's look at the limitations of mathematics, more precisely, at the

limitations of the axiomatic method, since Euclid the basis for mathe-

matics. A formal axiomatic theory is one that is speci�ed so precisely

that a computer can print out all the theorems by running through all

possible proofs in size-order and checking which are valid.

Axioms
deduction�! Theorems

If we know the complexity H(axioms) of a formal axiomatic theory,

what does this tell us about its limitations?

Recall the halting probability I call
 that we encountered in Section

4:

 =
X

C(p) halts

2�jpj:

Since
 is a probability, it is a real number between zero and one. It

is an extremely basic fact that if
 is written in binary notation, it is

a random in�nite bit string. More precisely,

lim
n!1

H(

n
)� n =1:

In other words, the complexity of

n
the �rst n bits of the base-two

notation for the halting probability
, becomes and stays arbitrarily

greater than n as n gets larger and larger.

My theorem that
 is random is closely related to Turing's famous

theorem on the undecidability of the halting problem, because if one

knew the �rst n bits of
 it would in principle enable one to solve

the halting problem for all programs p of size jpj less than n. This

Complexity and Randomness in Mathematics 201

implies that
 is a highly uncomputable real number. In fact it is even

extremely hard to prove whether a particular bit of
 is a 0 or a 1.

More precisely, the randomness of the halting probability
 implies

that one cannot deduce what the �rst n bits of
 are using a formal

axiomatic theory whose complexity H(axioms) is less than n bits. In

fact, I can show that the randomness of the halting probability
 im-

plies that one cannot even deduce what are the values and positions of n

scattered bits of
 using a formal axiomatic theory whose complexity

H(axioms) is less than n bits.

In other words, essentially the only way to determine whether par-

ticular bits of
 are 0 or 1 using reasoning based on axioms, is if the

particular results that one wishes to prove are axioms. I.e., the value

of each bit of
 is an irreducible independent mathematical fact, and

each bit is analogous to the result of an independent coin toss. In this

domain, reasoning is completely impotent and completely irrelevant.

One can however make statistical statements about the bits of
.

For example, 0's and 1's both have limiting relative frequency precisely

1=2. If this were not the case,
 would be compressible, as we saw in

Section 2.

The real number
 may seem to be somewhat exotic, but it actu-

ally even appears in elementary number theory, in the arithmetic of

whole numbers. I have constructed a two-hundred page equation with

seventeen-thousand variables which has the remarkable property that

it captures
 arithmetically.

My equation is what is called an exponential diophantine equation.

That is to say, it is an algebraic equation involving only unsigned whole-

number constants and variables, and is built up using only the opera-

tions of addition x+y, multiplication x�y, and integer exponentiation

xy. Such equations are named after the ancient Greek Diophantos who

�rst studied them.

How does my equation \capture"
?

One of the seventeen-thousand variables in my equation is the vari-

able n. For each particular value of n = 1; 2; 3; : : : ; let's ask whether

my monster equation has a �nite or an in�nite number of solutions.

It must be one or the other, because no solution is a �nite number of

solutions. My equation is craftily constructed so that the answer to

this question turns out to depend on whether the nth bit of
 is a 0 or

202 Part II|Discussion

a 1. If the nth bit of
 is 0, then my equation has only �nitely many

solutions. If the nth bit of
 is 1, then my equation has in�nitely many

solutions.

Thus it is just as impossible to prove whether my equation has

�nitely or in�nitely many solutions for a particular value of the para-

meter n, as it is to prove whether the nth bit of
 is a 0 or a 1! So as

far as deciding whether my equation has �nitely or in�nitely many so-

lutions is concerned, mathematical truth is in�nitely complex and has

absolutely no structure or pattern and appears to be completely ran-

dom! No set of axioms of �nite complexity can cope with the in�nite

complexity of
 embodied in my equation!

7. Conclusions

I have outlined the major features of my algorithmic information the-

ory. It provides a mathematical de�nition of complexity that has ele-

gant formal properties. My theory also throws a devastating new light

on G�odel's incompleteness theorem and on the limitations of the ax-

iomatic method. Algorithmic information theory does this by providing

information-theoretic incompleteness theorems based on measuring the

complexity of the axioms of formal mathematical theories.

My complexity based approach to incompleteness suggests that in-

completeness is natural and pervasive. To prove more one must some-

times assume more. In some cases the complexity of the axioms must

be increased to be commensurate with the complexity of the theorems

to be derived from them.

Further Reading

[1] Chaitin, G.J., \Randomness and mathematical proof," Scien-

ti�c American 232, No. 5 (May 1975), pp. 47{52. Also published

in the French, Italian and Japanese editions of Scienti�c Ameri-

can.

[2] Chaitin, G.J., \Randomness in arithmetic," Scienti�c Amer-

ican 259, No. 1 (July 1988), pp. 80{85. Also published in the

Complexity and Randomness in Mathematics 203

French, German, Italian, Japanese and Spanish editions of Scien-

ti�c American.

[3] Chaitin, G.J., \A random walk in arithmetic," New Scientist

125, No. 1709 (24 March 1990), pp. 44{46. Reprinted in N. Hall,

The New Scientist Guide to Chaos, Penguin, 1991. Catalan trans-

lation: \Un passeig aleatori a l'aritm�etica," Butllet�� de la Societat

Catalana de Matem�atiques, N�umero 5, Setembre 1990, pp. 9{13.

[4] Chaitin, G.J., \Le hasard des nombres," La Recherche 22, N�

232 (mai 1991), pp. 610{615. Also published in the Spanish edi-

tion of La Recherche.

[5] Chaitin, G.J., Lectures on \Number and randomness" and

\Randomness in arithmetic," in M.E. Carvallo, Nature, Cogni-

tion and System, Vol. 3, Kluwer, 1992.

[6] Chaitin, G.J., Algorithmic Information Theory, 3rd Printing,

Cambridge University Press, 1990.

[7] Chaitin, G.J., Information, Randomness & Incompleteness|

Papers on Algorithmic Information Theory, 2nd Edition, World

Scienti�c, 1990.

204 Part II|Discussion

BOOK REVIEW

The Mathematical Intelligencer

14, No. 4 (Fall 1992), pp. 69{71

A Diary on Information Theory by Alfr�ed R�enyi

Chichester: John Wiley & Sons, 1987; ix + 125 pp.

Hardcover, US$54.95 (ISBN 0{471{90971{8)

Reviewed by Gregory J. Chaitin

Can the di�culty of an exam be measured by how many

bits of information a student would need to pass it? This

may not be so absurd in the encyclopedic subjects but in

mathematics it doesn't make any sense since things follow

from each other and, in principle, whoever knows the bases

knows everything. All of the results of a mathematical the-

orem are in the axioms of mathematics in embryonic form,

aren't they? I will have to think this over some more.

A. R�enyi (A Diary on Information Theory, p. 31)

This remarkable quotation comes fromR�enyi's un�nished 1969 man-

uscript, written in the form of a �ctitious student's diary. This \diary"

comprises the bulk of R�enyi's posthumous work, A Diary on Informa-

tion Theory, a stimulating introduction to information theory and an

Copyright c
 1992, Springer-Verlag New York Inc., reprinted by permission.

205

206 Part II|Discussion

essay on the mathematical notion of information, a work left incomplete

at R�enyi's death in 1970 at the age of 49.

Alfr�ed R�enyi was a member of the Hungarian Academy of Sciences.

The Diary, as well as the material on information theory in his two

books on probability theory [1, 2], attest to the importance he attached

to the idea of information. This Diary also illustrates the importance

that R�enyi ascribed to wide-ranging nontechnical discussions of mathe-

matical ideas as a way to interest students in mathematics. He believed

the discussions served as vital teaching tools and stimuli for further re-

search.

R�enyi was part of the tidal wave of interest in information theory

provoked by Claude Shannon's publications in the 1940s. The many

papers with titles like \Information Theory, Photosynthesis, and Re-

ligion" actually published illustrate the tremendous and widespread

initial interest in information theory.

When R�enyi wrote his Diary, the initial wave of interest in infor-

mation theory was dying out. In fact, R�enyi was unaware of a second

major wave of interest in information theory slowly beginning to gather

momentum in the 1960s. At that time, Andrei Kolmogorov and I inde-

pendently proposed a new algorithmic information theory to capture

mathematically the notion of a random, patternless sequence as one

that is algorithmically incompressible.

The development of this new information theory was not as dramat-

ically abrupt as was the case with Shannon's version. It was not until

the 1970s that I corrected the initial de�nitions. The initial de�nitions

Kolmogorov and I proposed had serious technical de�ciencies which led

to great mathematical awkwardness. It turned out that a few changes

in the de�nitions led to a revised algorithmic information theory whose

elegant formulas closely mirror those in Shannon's original theory in a

radically altered interpretation [3].

In the 1970s I also began to apply algorithmic information theory

to extend and broaden G�odel's incompleteness theorem, culminating

in the 1980s in an explicit constructive proof that there is randomness

in arithmetic [4]. (For recent discussions of algorithmic information

theory directed to the general scienti�c public, see [5{16].)

R�enyi's Diary stops at the brink between Shannon's ensemble infor-

mation theory and the newer algorithmic information theory applying

Book Review 207

to individual sequences. With the bene�t of hindsight, one can detect

the germ of ideas that, if R�enyi had pursued them properly, might have

led him in the direction of algorithmic information theory.

Let us take the quotation at the head of this review. If R�enyi

had developed it properly, it might have led him to my insight that

incompleteness can be obtained very naturally via metatheorems whose

spirit can be summarized in the phrase, \a theorem cannot contain

more information than the axioms from which it is deduced." I think

this new information-theoretic viewpoint makes incompleteness seem a

much more menacing barrier than before.

A second instance occurs later in R�enyi's Diary, p. 41:

Therefore, the method of investigating the redundancy of a

text by erasing and reconstruction is not appropriate. By

this method, we would get a correct estimation of the real

redundancy only if the reconstruction could be done by a

computer. In that case, the meaning of the text would-

n't be a factor because a computer wouldn't understand it

and could reconstruct it only by means of a dictionary and

grammatical rules.

If R�enyi could have formalized this, perhaps he might have discovered

the complexity measure used in algorithmic information theory. (In

algorithmic information theory, the complexity of a string or sequence

of symbols is de�ned to be the size of the smallest computer program

for calculating that string of symbols.)

So R�enyi's Diary balances on the edge between the old and the new

versions of information theory. It also touches on connections between

information theory and physics and biology that are still the subject of

research [7, 8].

In what remains of this review, I would like to
esh out the above

remarks by discussing Hilbert's tenth problem in the light of algorith-

mic information theory. I will end with a few controversial remarks

about the potential signi�cance of these information-theoretic meta-

mathematical results, and their connection with experimental mathe-

matics and the quasi-empirical school of thought regarding the founda-

tions of mathematics.

208 Part II|Discussion

Consider a diophantine equation

P (k; x1; x2; : : :) = 0

with parameter k. Ask the question, \Does P (k) = 0 have a solution?"

Let

q = q0q1q2 � � �
be the in�nite bit string with

q
k
=

(
0 if P (k) = 0 has no solution

1 if P (k) = 0 has a solution.

Let

qn = q0q1 � � � qn�1
be the string of the �rst n bits of the in�nite string q, that is, the string
of answers to the �rst n questions. Let H(qn) be the complexity of qn,

that is, the size in bits of the smallest program for computing qn.
If Hilbert had been right and every mathematical question had a

solution, then there would be a �nite set of axioms from which one

could deduce whether P (k) = 0 has a solution or not for each k. We

would then have

H(qn) � H(n) + c:

The c bits are the �nite amount of information in our axioms, and this

inequality asserts that if one is given n, using the axioms one can com-

pute qn, that is, decide which among the �rst n cases of the diophantine

equation have solutions and which do not. Thus, the complexityH(qn)

of answering the �rst n questions would be at most order of log n bits.

We ignore the immense time it might take to deduce the answers from

the axioms; we are concentrating on the amount of information in-

volved.

In 1970, Yuri Matijasevi�c showed that there is no algorithm for

deciding if a diophantine equation can be solved. However, if we are

told the number m of equations P (k) = 0 with k < n that have a

solution, then we can eventually determine which do and which do not.

This shows that

H(qn) � H(n) +H(m) + c0

Book Review 209

for some m � n, which implies that the complexity H(qn) of answer-

ing the �rst n questions is still at most order of log n bits. So from

an information-theoretic point of view, Hilbert's tenth problem, while

undecidable, does not look too di�cult.

In 1987, I explicitly constructed [4] an exponential diophantine

equation

L(k; x1; x2; : : :) = R(k; x1; x2; : : :)

with a parameter k. This equation gives complete randomness as fol-

lows. Ask the question, \Does L(k) = R(k) have in�nitely many solu-

tions?" Now let

q = q0q1q2 � � �
be the in�nite bit string with

q
k
=

(
0 if L(k) = R(k) has �nitely many solutions

1 if L(k) = R(k) has in�nitely many solutions.

As before, let

qn = q0q1 � � � qn�1
be the string of the �rst n bits of the in�nite string q, that is, the string

of answers to the �rst n questions. Let H(qn) be the complexity of qn,

that is, the size in bits of the smallest program for computing qn. Now
we have

H(qn) � n� c00;
that is, the string of answers to the �rst n questions qn is irre-

ducible mathematical information and the in�nite string of answers

q = q0q1q2 � � � is now algorithmically random.

Surprisingly, Hilbert was wrong to assume that every mathematical

question has a solution. The above exponential diophantine equation

yields an in�nite series of independent irreducible mathematical facts.

It yields an in�nite series of questions which reasoning is impotent to

answer because the only way to answer these questions is to assume

each individual answer as a new axiom! Here one can get out as the-

orems only what one explicitly puts in as axioms, and reasoning is

completely useless! I think this information-theoretic approach to in-

completeness makes incompleteness look much more natural and perva-

sive than has previously been the case. Algorithmic information theory

210 Part II|Discussion

provides some theoretical justi�cation for the experimental mathemat-

ics made possible by the computer and for the new quasi-empirical view

of the philosophy of mathematics that is displacing the traditional for-

malist, logicist, and intuitionist positions [5].

References

1. Alfr�ed R�enyi, Introduction to information theory, Probability

Theory, Amsterdam: North-Holland (1970), 540{616.

2. Alfr�ed R�enyi, Independence and information, Foundations of

Probability, San Francisco: Holden-Day (1970), 146{157.

3. Gregory J. Chaitin, A theory of program size formally

identical to information theory, Information, Randomness &

Incompleteness|Papers on Algorithmic Information Theory,

Second Edition, Singapore: World Scienti�c (1990), 113{128.

4. Gregory J. Chaitin, Algorithmic Information Theory, Cambridge:

Cambridge University Press (1987).

5. John L. Casti, Proof or consequences, Searching for Certainty,

New York: Morrow (1990), 323{403.

6. Gregory J. Chaitin, A random walk in arithmetic, The New Sci-

entist Guide to Chaos (Nina Hall, ed.), Harmondsworth: Penguin

(1991), 196{202.

7. David Ruelle, Complexity and G�odel's theorem, Chance and

Chaos, Princeton: Princeton University Press (1991), 143{149.

8. David Ruelle, Complexit�e et th�eor�eme de G�odel, Hasard et Chaos,

Paris: Odile Jacob (1991), 189{196.

9. Luc Brisson and F. Walter Meyerstein, Que peut nous apprendre

la science?, Inventer L'Univers, Paris: Les Belles Lettres (1991),

161{197.

Book Review 211

10. Gregory J. Chaitin, Le hasard des nombres, La Recherche 22

(1991) no. 232, 610{615.

11. John A. Paulos, Complexity of programs, G�odel and his theorem,

Beyond Numeracy, New York: Knopf (1991), 47{51, 95{97.

12. John D. Barrow, Chaotic axioms, Theories of Everything, Oxford:

Clarendon Press (1991), 42{44.

13. Tor N�rretranders, Uendelige algoritmer, M�rk Verden, Den-

mark: Gyldendal (1991), 65{91.

14. Martin Gardner, Chaitin's omega, Fractal Music, Hypercards and

More: : : , New York: Freeman (1992), 307{319.

15. Paul Davies, The unknowable, The Mind of God, New York: Si-

mon & Schuster (1992), 128{134.

16. Gregory J. Chaitin, Zahlen und Zufall, Naturwissenschaft und

Weltbild (Hans-Christian Reichel and Enrique Prat de la Riba,

eds.), Vienna: Verlag H�older{Pichler{Tempsky (1992), 30{44.

IBM Research Division

Yorktown Heights, NY 10598 USA

212 Part II|Discussion

Epilogue

The Challenge for the Future

213

215

\This is my hand. I can move it, feel the blood pulsing through it.
The sun is still high in the sky and I, Antonius Block, am playing
chess with Death."

|The Knight in
Ingmar Bergman's 1956 �lm

The Seventh Seal

216 Epilogue

COMPLEXITY AND

BIOLOGY

New Scientist 132, No. 1789

(5 October 1991), p. 52

Information and the Origin of Life

by Bernd-Olaf K�uppers, MIT Press, pp 215, $20.25

Gregory Chaitin

BERND-OLAF K�uppers' Information and the Origin of Life, origi-

nally published in German several years ago, belongs to that handful

of books, including Erwin Schr�odinger's 1944 classicWhat is Life?, that

confront the most fundamental conceptual problems of biology.

What are these fundamental problems? In a more practical domain,

Sydney Brenner, I believe, put it succinctly. \Genetic engineering," he

said, \is being able to build a centaur!" At a more conceptual level,

the problem, a physicist might say, is to develop a thermodynamic or

statistical mechanics theory of the origin and evolution of life; while a

mathematician would say that it is to prove when life must arise and

evolve, and what its rate of evolution is.

Such a theory would have to tell us how likely life is to appear and

Copyright c
 1991, IPC Magazines New Scientist, reprinted by permission.

217

218 Epilogue

evolve, to give us a feel for how common life is in the Universe, and

whether it is ubiquitous or extremely rare.

This book discusses the connection between biological information,

the mathematical theory of information and the newer algorithmic ver-

sion of information theory. I think it is fair to say that, in spite of the

interesting points of contact between biology and information theory,

much remains to be done and we are far from being able to answer the

fundamental questions.

From where is progress likely to come?

On the one hand, rapid advances in understanding the molecular

biology of embryogenesis and development may suggest new versions

of algorithmic information theory more in tune with the actual \com-

puter programming" language used by DNA to describe how to build

organisms.

And I hope that one day we will visit other planets and other solar

systems and get a feel for whether life is common or rare, so that even if

theoreticians make no progress space exploration will eventually give us

the answer. In the short term, I expect experiments with \arti�cial life"

on massively parallel computers will lead to theoretical developments.

[See Steven Levy,Arti�cial Life,New York: Pantheon Books (1992).]

In summary, I would like to repeat a story from Abraham Pais's

forthcoming book Niels Bohr's Times (Oxford University Press, pp

565, $25). According to Pais, Bohr told the following story: \Once

upon a time a young rabbinical student went to hear three lectures

by a famous rabbi. Afterwards he told his friends: `The �rst talk

was brilliant, clear and simple. I understood every word. The second

was even better, deep and subtle. I didn't understand much, but the

rabbi understood all of it. The third was by far the �nest, a great and

unforgettable experience. I understood nothing and the rabbi didn't

understand much either.' "

Information and the Origin of Life belongs to the latter class. It

reminds us that in spite of the splendid achievements of molecular bi-

ology, there is still much that we do not understand and much to be

done. 2

Gregory Chaitin is at IBM's Thomas J. Watson Research Center

in New York.

AFTERWORD

A life is a whirlwind of experiences. Here are some intense experiences

that stick out in my mind:

Making love.

Proving a signi�cant theorem.

Hiking up a mountain all morning in fog, mud and drizzle

then suddenly on rock at summit above cloud in dazzling

sunshine (upstate New York).

Inventing a new mathematical concept.

Crossing a snow bridge in the Argentine Andes, unroped.

Swimming from one British Virgin Island to another.

Making it back to a rowing club sculling against the current

after a long day in the Tigre river delta in Argentina.

Writing a large computer program.

Getting a large computer program to work.

Dancing in the street in Rio de Janiero at Carnival, with la

porta-bandeira of an escola de samba.

Writing my Cambridge University Press book.

Lecturing on randomness in arithmetic in G�odel's class-

room in the Mathematical Institute of the University of

Vienna.

Meeting the King and Queen of Belgium andMr Honda

at a Solvay conference in Brussels.

Finding the Ring nebula in Lyra with an 8" f/6 Newtonian

re
ector that I built myself.

The aurora shimmering in the frosty sky of northern Quebec

the �rst week in September.

219

220 Epilogue

The zodiacal light1 after sunset in the British Virgin Islands.

The brilliant Milky Way high in the Andes on the

Argentine-Chile border.

A total eclipse of the sun breaking the searing noonday heat

in southern India.

The white nights and the snow and ice in early May north

of the arctic circle in Sweden.

Hearing God's thoughts in Bach's The Art of the Fugue.

The su�ering and madness in Shostakovich's First Violin

Concerto.

A sumptuous rather than stark performance of Jacques

Offenbach's The Tales of Ho�mann at the Colon

Opera House in Buenos Aires.

To Life!

Gregory Chaitin

April 1992

1Sunlight scattered from dust particles in the plane of the solar system.

Bibliography

221

SOURCES OF

QUOTATIONS

The quotations are from:

1. Paul Arthur Schilpp, Albert Einstein: Philosopher{Scientist,

Library of Living Philosophers, VolumeVII, La Salle: Open Court

(1988).

2. Constance Reid, Hilbert, New York: Springer-Verlag (1970).

3. Felix E. Browder, Mathematical Developments Arising from

Hilbert Problems, Proceedings of Symposia in Pure Mathemat-

ics, Volume XXVIII, Providence: American Mathematical Soci-

ety (1976).

4. Constance Reid, Hilbert{Courant, New York: Springer-Verlag

(1986).

5. G. H. Hardy, A Mathematician's Apology, Cambridge: Cam-

bridge University Press (1989).

6. J. E. Littlewood, A Mathematician's Miscellany, London:

Methuen (1963).

7. B�ela Bollob�as, Littlewood's Miscellany, Cambridge: Cam-

bridge University Press (1988).

8. G. Polya, How to Solve It|A New Aspect of the Mathematical

Method, Princeton: Princeton University Press (1988).

223

224 Bibliography

9. Eric Temple Bell,Mathematics: Queen & Servant of Science,

Redmond: Microsoft Press (1987).

10. Mark Kac, Enigmas of Chance|An Autobiography, Berkeley:

University of California Press (1987).

11. Ingmar Bergman, Four Screenplays of Ingmar Bergman, New

York: Simon & Schuster (1989).

12. Norman C. Chaitin, The Small Hours, Film Library of the

Museum of Modern Art, New York.

CLASSICS

Here is a list of some of the favorite books from my childhood, books

that are especially valuable for a young self-taught mathematician:

1. George Gamow, One, Two, Three, In�nity, New York: Dover

(1988).

2. George Gamow, Mr Tompkins in Paperback, Cambridge:

Cambridge University Press (1987).

3. Albert Einstein and Leopold Infeld, The Evolution of

Physics from Early Concepts to Relativity and Quanta, New York:

Simon & Schuster (1966).

4. W. W. Sawyer, Mathematician's Delight, Harmondsworth:

Penguin (1991).

5. Tobias Dantzig, Number, the Language of Science, New York:

Macmillan (1954).

6. Eric Temple Bell,Mathematics: Queen & Servant of Science,

Redmond: Microsoft Press (1987).

7. Richard Courant and Herbert Robbins, What is Mathe-

matics? An Elementary Approach to Ideas and Methods, Oxford:

Oxford University Press (1978).

8. Hans Rademacher and Otto Toeplitz, The Enjoyment

of Mathematics|Selections from Mathematics for the Amateur,

New York: Dover (1990).

225

226 Bibliography

9. G. Polya, How to Solve It|A New Aspect of the Mathematical

Method, Princeton: Princeton University Press (1988).

10. G. Polya,Mathematics and Plausible Reasoning, (two volumes),

Princeton: Princeton University Press (1990).

11. G. H. Hardy, A Mathematician's Apology, Cambridge: Cam-

bridge University Press (1989).

12. G. H. Hardy and E. M. Wright, An Introduction to the The-

ory of Numbers, Oxford: Clarendon Press (1990).

13. G. H. Hardy, A Course of Pure Mathematics, Cambridge:

Cambridge University Press (1952).

14. James R. Newman, The World of Mathematics, (four volumes),

Redmond: Microsoft Press (1988).

About the author

Gregory J Chaitin is a member of the Computer Science Department

at the IBM Thomas J Watson Research Center in Yorktown Heights,

New York. He created algorithmic information theory in the mid 1960's

when he was a teenager. In the quarter century since he has been the

principal architect of the theory. His contributions include: the de�-

nition of a random sequence via algorithmic incompressibility, the re-

formulation of program-size complexity in terms of self-delimiting pro-

grams, the de�nition of the relative complexity of one object given a

minimal-size program for another, the discovery of the halting prob-

ability Omega and its signi�cance, the information-theoretic approach

to G�odel's incompleteness theorem, the discovery that the question of

whether an exponential diophantine equation has �nitely or in�nitely

many solutions is in some cases absolutely random, and the theory of

program size for Turing machines and for LISP. He is the author of the

monograph \Algorithmic Information Theory" published by Cambridge

University Press in 1987.

227

228

INFORMATION-

THEORETIC

INCOMPLETENESS

World Scienti�c Series in Computer Sci-

ence | Vol. 35

by Gregory J Chaitin (IBM)

In this mathematical autobiography Gregory Chaitin presents a tech-

nical survey of his work and a nontechnical discussion of its signif-

icance. The volume is an essential companion to the earlier collec-

tion of Chaitin's papers INFORMATION, RANDOMNESS & INCOM-

PLETENESS, also published by World Scienti�c.

The technical survey contains many new results, including a de-

tailed discussion of LISP program size and new versions of Chaitin's

most fundamental information-theoretic incompleteness theorems. The

nontechnical part includes the lecture given by Chaitin in G�odel's class-

room at the University of Vienna, a transcript of a BBC TV interview,

and articles from NEW SCIENTIST, LA RECHERCHE, and THE

MATHEMATICAL INTELLIGENCER.

229

230 Back Cover

Readership: Computer scientists, mathematicians, physicists, philo-

sophers and biologists.

